Application of genetic algorithms in graph matching

M. Krcmár, A. Dhawan
{"title":"Application of genetic algorithms in graph matching","authors":"M. Krcmár, A. Dhawan","doi":"10.1109/ICNN.1994.374829","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GA) can be exploited for optimal graph matching. Graphs represent powerful method of a pattern formal description. Globally optimal graph matching is a NP-complete problem. Pattern distortions and noise increase an optimal search difficulty which could be tackled using GA. This paper describes results of simple GA applied on a graph matching problem. As a conclusion, the suitable GA for an optimal graph \"isomorphism\" and \"monomorphism\" is proposed. Used coding resembles the travelling salesman problem (TSP). Consequently, performance of ordering operators has been tested. In contrast to the TSP, the fitness function depends on chromosome value positioning not ordering. It results in differences between optimal GA configuration for graph matching and for TSP.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Genetic algorithms (GA) can be exploited for optimal graph matching. Graphs represent powerful method of a pattern formal description. Globally optimal graph matching is a NP-complete problem. Pattern distortions and noise increase an optimal search difficulty which could be tackled using GA. This paper describes results of simple GA applied on a graph matching problem. As a conclusion, the suitable GA for an optimal graph "isomorphism" and "monomorphism" is proposed. Used coding resembles the travelling salesman problem (TSP). Consequently, performance of ordering operators has been tested. In contrast to the TSP, the fitness function depends on chromosome value positioning not ordering. It results in differences between optimal GA configuration for graph matching and for TSP.<>
遗传算法在图匹配中的应用
遗传算法(GA)可以用于最优图匹配。图是模式形式化描述的有力方法。全局最优图匹配是一个np完全问题。模式失真和噪声增加了最优搜索的难度,可以用遗传算法来解决。本文描述了简单遗传算法在图匹配问题上的应用结果。作为结论,提出了适合于最优图“同构”和“单态”的遗传算法。使用的编码类似于旅行推销员问题(TSP)。因此,对排序运算符的性能进行了测试。与TSP相比,适应度函数依赖于染色体值的定位而不是排序。结果表明,图匹配的最优遗传算法配置与TSP.>的最优遗传算法配置存在差异
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信