Semi-supervised fuzzy C-means clustering for change detection from multispectral satellite image

D. Mai, L. Ngo
{"title":"Semi-supervised fuzzy C-means clustering for change detection from multispectral satellite image","authors":"D. Mai, L. Ngo","doi":"10.1109/FUZZ-IEEE.2015.7337978","DOIUrl":null,"url":null,"abstract":"Data clustering has been applied in almost areas such as health, natural resource management, urban planning... especially, fuzzy clustering which the advantage with handling better for ambiguous data. This paper proposes a method of improving fuzzy c-means clustering algorithm by using the criteria to move the prototype of clusters to the expected centroids which are pre-determined on the basis of samples. The proposed algorithm is used for a model of change detection on multispectral satellite imagery at multiple temporals. The experiments are implemented on various data sets in comparison with other approaches.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"114 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Data clustering has been applied in almost areas such as health, natural resource management, urban planning... especially, fuzzy clustering which the advantage with handling better for ambiguous data. This paper proposes a method of improving fuzzy c-means clustering algorithm by using the criteria to move the prototype of clusters to the expected centroids which are pre-determined on the basis of samples. The proposed algorithm is used for a model of change detection on multispectral satellite imagery at multiple temporals. The experiments are implemented on various data sets in comparison with other approaches.
基于半监督模糊c均值聚类的多光谱卫星图像变化检测
数据聚类已应用于卫生、自然资源管理、城市规划等领域。特别是模糊聚类,对模糊数据处理有较好的优势。本文提出了一种改进模糊c均值聚类算法的方法,利用准则将聚类的原型移动到基于样本预先确定的期望质心上。将该算法应用于多光谱卫星图像多时间点变化检测模型。在不同的数据集上进行了实验,并与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信