GNNFRM: Genetically constructed neuro new fuzzy reasoning model

M. Tayel, M. Gamal Eldin Ahmed
{"title":"GNNFRM: Genetically constructed neuro new fuzzy reasoning model","authors":"M. Tayel, M. Gamal Eldin Ahmed","doi":"10.1109/NRSC.2001.929390","DOIUrl":null,"url":null,"abstract":"In this paper, a genetic algorithm with adaptive probabilities of crossover and mutation is introduced to find near global optimum parameters for the Neuro-new fuzzy reasoning model (NNFRM). The parameters to be optimized are those of input membership functions, output membership functions and relation matrix. A fuzzy evaluation criterion is introduced to evaluate the different fuzzy models. This criterion stresses the fact that the fuzzy system must be comprehensible and transparent to the user. The performance of the proposed model is evaluated using a benchmark problem. Also, the generalization of the proposed model is compared to the feed forward neural network. It is shown that the proposed GNNFRM outperforms other modeling methods. The generalization of the proposed model is better than that of the feed forward neural network.","PeriodicalId":123517,"journal":{"name":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2001.929390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a genetic algorithm with adaptive probabilities of crossover and mutation is introduced to find near global optimum parameters for the Neuro-new fuzzy reasoning model (NNFRM). The parameters to be optimized are those of input membership functions, output membership functions and relation matrix. A fuzzy evaluation criterion is introduced to evaluate the different fuzzy models. This criterion stresses the fact that the fuzzy system must be comprehensible and transparent to the user. The performance of the proposed model is evaluated using a benchmark problem. Also, the generalization of the proposed model is compared to the feed forward neural network. It is shown that the proposed GNNFRM outperforms other modeling methods. The generalization of the proposed model is better than that of the feed forward neural network.
GNNFRM:遗传构建的神经模糊推理新模型
本文引入了一种具有自适应交叉和变异概率的遗传算法来求解神经新模糊推理模型(NNFRM)的近全局最优参数。待优化的参数为输入隶属函数、输出隶属函数和关系矩阵。引入模糊评价准则对不同的模糊模型进行评价。这个标准强调了这样一个事实,即模糊系统必须对用户是可理解的和透明的。使用基准问题评估了所提出模型的性能。并与前馈神经网络的泛化性能进行了比较。结果表明,所提出的GNNFRM模型优于其他模型。该模型的泛化性优于前馈神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信