A control method of substrate feeding about lysine fermentation

Weirong Wu, Shenping Ding, Bo Wang
{"title":"A control method of substrate feeding about lysine fermentation","authors":"Weirong Wu, Shenping Ding, Bo Wang","doi":"10.1109/WCICA.2012.6357923","DOIUrl":null,"url":null,"abstract":"A fuzzy neural network inverse model is established in order to solve the optimal and the maximum output rate in lysine substrate feeding fermentation process control through research the structural and parameters. The model is more robust, more adjusts the membership function automatically and more dynamics in the rule optimal control than the traditional rule-based fuzzy control. And it is trained by the optimal production data in the actual process of lysine substrate feeding. The output of the substrate feeding inverse model is the real-time input of system. Experimental results show that lysine productivity improved significantly and achieve real-time online control by the method in lysine substrate feeding process control.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6357923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fuzzy neural network inverse model is established in order to solve the optimal and the maximum output rate in lysine substrate feeding fermentation process control through research the structural and parameters. The model is more robust, more adjusts the membership function automatically and more dynamics in the rule optimal control than the traditional rule-based fuzzy control. And it is trained by the optimal production data in the actual process of lysine substrate feeding. The output of the substrate feeding inverse model is the real-time input of system. Experimental results show that lysine productivity improved significantly and achieve real-time online control by the method in lysine substrate feeding process control.
赖氨酸发酵中底物进料的控制方法
通过对结构和参数的研究,建立模糊神经网络逆模型,求解赖氨酸底物进料发酵过程控制的最优产量和最大产量。与传统的基于规则的模糊控制相比,该模型具有更强的鲁棒性、更强的隶属度自动调节能力和更强的动态性。并在赖氨酸底物加料的实际过程中,利用最优生产数据进行训练。基板进给逆模型的输出即为系统的实时输入。实验结果表明,该方法可显著提高赖氨酸产率,实现赖氨酸底物进料过程的实时在线控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信