Multilingual-GAN: A Multilingual GAN-based Approach for Handwritten Generation

Manh-Khanh Ngo Huu, Sy-Tuyen Ho, Vinh-Tiep Nguyen, T. Ngo
{"title":"Multilingual-GAN: A Multilingual GAN-based Approach for Handwritten Generation","authors":"Manh-Khanh Ngo Huu, Sy-Tuyen Ho, Vinh-Tiep Nguyen, T. Ngo","doi":"10.1109/MAPR53640.2021.9585285","DOIUrl":null,"url":null,"abstract":"Handwritten Text Recognition (HTR) is a difficult problem because of the diversity of calligraphic styles. To enhance the accuracy of HTR systems, a large amount of training data is required. The previous methods aim at generating handwritten images from input strings via RNN models such as LSTM or GRU. However, these methods require a predefined alphabet corresponding to a given language. Thus, they can not well adapt to a new languages. To address this problem, we propose an Image2Image-based method named Multilingual-GAN, which translates a printed text image into a handwritten style one. The main advantage of this approach is that the model does not depend on any language alphabets. Therefore, our model can be used on a new language without re-training on a new dataset. The quantitative results demonstrate that our proposed method outperforms other state-of-the-art models. Code is available at https://github.com/HoSyTuyen/MultilingualGAN","PeriodicalId":233540,"journal":{"name":"2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPR53640.2021.9585285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Handwritten Text Recognition (HTR) is a difficult problem because of the diversity of calligraphic styles. To enhance the accuracy of HTR systems, a large amount of training data is required. The previous methods aim at generating handwritten images from input strings via RNN models such as LSTM or GRU. However, these methods require a predefined alphabet corresponding to a given language. Thus, they can not well adapt to a new languages. To address this problem, we propose an Image2Image-based method named Multilingual-GAN, which translates a printed text image into a handwritten style one. The main advantage of this approach is that the model does not depend on any language alphabets. Therefore, our model can be used on a new language without re-training on a new dataset. The quantitative results demonstrate that our proposed method outperforms other state-of-the-art models. Code is available at https://github.com/HoSyTuyen/MultilingualGAN
多语言gan:一种基于多语言gan的手写生成方法
由于书法风格的多样性,手写体文本识别(HTR)是一个难题。为了提高HTR系统的准确性,需要大量的训练数据。之前的方法旨在通过LSTM或GRU等RNN模型从输入字符串生成手写图像。然而,这些方法需要与给定语言对应的预定义字母表。因此,他们不能很好地适应一种新的语言。为了解决这个问题,我们提出了一种基于image2image的方法,称为Multilingual-GAN,它将打印的文本图像翻译成手写样式的图像。这种方法的主要优点是该模型不依赖于任何语言字母。因此,我们的模型可以在新的语言上使用,而无需在新的数据集上重新训练。定量结果表明,我们提出的方法优于其他最先进的模型。代码可从https://github.com/HoSyTuyen/MultilingualGAN获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信