Color Features and KNN in Classification of Raw Arecanut images

S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya
{"title":"Color Features and KNN in Classification of Raw Arecanut images","authors":"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya","doi":"10.1109/ICGCIOT.2018.8753075","DOIUrl":null,"url":null,"abstract":"Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.
原始槟榔图像的颜色特征和KNN分类
槟榔是印度南部重要的经济作物之一。生槟榔的分级是分级的主要任务之一,是作物经营的重要组成部分。本文提出了一种对生槟榔进行分类的模型。我们使用颜色直方图和颜色矩作为K-NN分类器的特征。利用K-NN的两种颜色特征和四种距离度量,在800张四类图像的数据集上进行了实验。对颜色直方图特征进行K值为3和欧氏距离度量的20%训练,分类准确率达到98.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信