Application of Particle Swarm Optimization for Production Scheduling

M. M. Ghumare, L. Bewoor, S. Sapkal
{"title":"Application of Particle Swarm Optimization for Production Scheduling","authors":"M. M. Ghumare, L. Bewoor, S. Sapkal","doi":"10.1109/ICCUBEA.2015.100","DOIUrl":null,"url":null,"abstract":"Production scheduling is an interdisciplinary challenge of addressing optimality criteria such as minimizing makespan, mean flow time, idle machine time, total tardiness, number of tardy jobs, in-process inventory cost, cost of being late. Research till date used various AI techniques, heuristics and metaheuristics to optimize scheduling criteria. If problem size goes on increasing heuristics is not able to give optimal results. The enumerations for finding the probabilities for improving the utilization of resources turn this problem towards NP-Hard. This paper presents comprehensive coverage of PSO application in solving optimization problems in the area of production scheduling. The paper discusses about use of PSO for improvement in the results of optimality criteria.","PeriodicalId":325841,"journal":{"name":"2015 International Conference on Computing Communication Control and Automation","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computing Communication Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCUBEA.2015.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Production scheduling is an interdisciplinary challenge of addressing optimality criteria such as minimizing makespan, mean flow time, idle machine time, total tardiness, number of tardy jobs, in-process inventory cost, cost of being late. Research till date used various AI techniques, heuristics and metaheuristics to optimize scheduling criteria. If problem size goes on increasing heuristics is not able to give optimal results. The enumerations for finding the probabilities for improving the utilization of resources turn this problem towards NP-Hard. This paper presents comprehensive coverage of PSO application in solving optimization problems in the area of production scheduling. The paper discusses about use of PSO for improvement in the results of optimality criteria.
粒子群优化在生产调度中的应用
生产调度是一个跨学科的挑战,解决最优性标准,如最小化完工时间、平均流程时间、闲置机器时间、总延迟、延迟作业数量、在制品库存成本、延迟成本。迄今为止的研究使用了各种人工智能技术、启发式和元启发式来优化调度标准。如果问题规模继续增加,启发式算法就不能给出最优结果。寻找提高资源利用率的概率的枚举使这个问题变成了NP-Hard。本文全面介绍了粒子群算法在解决生产调度领域优化问题中的应用。本文讨论了利用粒子群算法改进最优性准则的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信