Experiences of Adapting Multimodal Machine Translation Techniques for Hindi

Baban Gain, Dibyanayan Bandyopadhyay, Asif Ekbal
{"title":"Experiences of Adapting Multimodal Machine Translation Techniques for Hindi","authors":"Baban Gain, Dibyanayan Bandyopadhyay, Asif Ekbal","doi":"10.26615/978-954-452-073-1_007","DOIUrl":null,"url":null,"abstract":"Multimodal Neural Machine Translation (MNMT) is an interesting task in natural language processing (NLP) where we use visual modalities along with a source sentence to aid the source to target translation process. Recently, there has been a lot of works in MNMT frameworks to boost the performance of standalone Machine Translation tasks. Most of the prior works in MNMT tried to perform translation between two widely known languages (e.g. English-to-German, English-to-French ). In this paper, We explore the effectiveness of different state-of-the-art MNMT methods, which use various data oriented techniques including multimodal pre-training, for low resource languages. Although the existing methods works well on high resource languages, usability of those methods on low-resource languages is unknown. In this paper, we evaluate the existing methods on Hindi and report our findings.","PeriodicalId":114625,"journal":{"name":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-073-1_007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Multimodal Neural Machine Translation (MNMT) is an interesting task in natural language processing (NLP) where we use visual modalities along with a source sentence to aid the source to target translation process. Recently, there has been a lot of works in MNMT frameworks to boost the performance of standalone Machine Translation tasks. Most of the prior works in MNMT tried to perform translation between two widely known languages (e.g. English-to-German, English-to-French ). In this paper, We explore the effectiveness of different state-of-the-art MNMT methods, which use various data oriented techniques including multimodal pre-training, for low resource languages. Although the existing methods works well on high resource languages, usability of those methods on low-resource languages is unknown. In this paper, we evaluate the existing methods on Hindi and report our findings.
多模态机器翻译技术在印地语中的应用经验
多模态神经机器翻译(MNMT)是自然语言处理(NLP)中的一个有趣的任务,我们使用视觉模态和源句子来帮助源到目标的翻译过程。近年来,在MNMT框架中进行了大量的工作来提高独立机器翻译任务的性能。在MNMT之前的大部分工作都试图在两种广为人知的语言之间进行翻译(例如英语到德语,英语到法语)。在本文中,我们探讨了不同的最先进的MNMT方法的有效性,这些方法使用了各种面向数据的技术,包括多模态预训练,用于低资源语言。虽然现有的方法在高资源语言上表现良好,但这些方法在低资源语言上的可用性尚不清楚。在本文中,我们评估了印地语的现有方法,并报告了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信