Karel Veselý, M. Karafiát, F. Grézl, M. Janda, E. Egorova
{"title":"The language-independent bottleneck features","authors":"Karel Veselý, M. Karafiát, F. Grézl, M. Janda, E. Egorova","doi":"10.1109/SLT.2012.6424246","DOIUrl":null,"url":null,"abstract":"In this paper we present novel language-independent bottleneck (BN) feature extraction framework. In our experiments we have used Multilingual Artificial Neural Network (ANN), where each language is modelled by separate output layer, while all the hidden layers jointly model the variability of all the source languages. The key idea is that the entire ANN is trained on all the languages simultaneously, thus the BN-features are not biased towards any of the languages. Exactly for this reason, the final BN-features are considered as language independent. In the experiments with GlobalPhone database, we show that Multilingual BN-features consistently outperform Monolingual BN-features. Also, cross-lingual generalization is evaluated, where we train on 5 source languages and test on 3 other languages. The results show that the ANN can produce very good BN-features even for unseen languages, in some cases even better than if we trained the ANN on the target language only.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"216","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 216
Abstract
In this paper we present novel language-independent bottleneck (BN) feature extraction framework. In our experiments we have used Multilingual Artificial Neural Network (ANN), where each language is modelled by separate output layer, while all the hidden layers jointly model the variability of all the source languages. The key idea is that the entire ANN is trained on all the languages simultaneously, thus the BN-features are not biased towards any of the languages. Exactly for this reason, the final BN-features are considered as language independent. In the experiments with GlobalPhone database, we show that Multilingual BN-features consistently outperform Monolingual BN-features. Also, cross-lingual generalization is evaluated, where we train on 5 source languages and test on 3 other languages. The results show that the ANN can produce very good BN-features even for unseen languages, in some cases even better than if we trained the ANN on the target language only.