Sparse Bayesian Harmonic State Estimation

Ye Yuan, Wei Zhou, Hai-Tao Zhang, Zuowei Ping, Omid Ardakanian
{"title":"Sparse Bayesian Harmonic State Estimation","authors":"Ye Yuan, Wei Zhou, Hai-Tao Zhang, Zuowei Ping, Omid Ardakanian","doi":"10.1109/SmartGridComm.2018.8587571","DOIUrl":null,"url":null,"abstract":"This paper presents a novel iterative method for harmonic state estimation based on the sparse Bayesian learning framework. The proposed method can locate harmonic sources and estimate the distribution of harmonic voltages using fewer harmonic meters than buses, despite the strong correlation between the columns of the system matrix. Extensive simulations are performed on a benchmark transmission system to corroborate the efficacy of this method when measurements are noise free. Our results show that the proposed state estimator achieves an identification error of less than $1.6\\times 10^{-6}$ and can locate harmonic sources with an average success rate of 97.92%, outperforming state-of-the-art harmonic state estimators.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a novel iterative method for harmonic state estimation based on the sparse Bayesian learning framework. The proposed method can locate harmonic sources and estimate the distribution of harmonic voltages using fewer harmonic meters than buses, despite the strong correlation between the columns of the system matrix. Extensive simulations are performed on a benchmark transmission system to corroborate the efficacy of this method when measurements are noise free. Our results show that the proposed state estimator achieves an identification error of less than $1.6\times 10^{-6}$ and can locate harmonic sources with an average success rate of 97.92%, outperforming state-of-the-art harmonic state estimators.
稀疏贝叶斯调和状态估计
提出了一种基于稀疏贝叶斯学习框架的谐波状态估计迭代方法。尽管系统矩阵列之间具有很强的相关性,但该方法可以利用比母线更少的谐波计来定位谐波源和估计谐波电压的分布。在一个基准传输系统上进行了大量的仿真,以证实该方法在测量无噪声时的有效性。我们的研究结果表明,所提出的状态估计器的识别误差小于$1.6\乘以10^{-6}$,并且能够以97.92%的平均成功率定位谐波源,优于目前最先进的谐波状态估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信