Forecast load impact from demand response resources

Xiaoyang Zhou, N. Yu, W. Yao, Raymond Johnson
{"title":"Forecast load impact from demand response resources","authors":"Xiaoyang Zhou, N. Yu, W. Yao, Raymond Johnson","doi":"10.1109/PESGM.2016.7741992","DOIUrl":null,"url":null,"abstract":"To improve forecasting accuracy for baseline load and load impact from demand response resources, this paper develops three innovative statistical models. These models are regression spline fixed effect model, fixed effect change point model and mixed effect change point model. The models developed are applied to forecast baseline load and load impact from air conditioning cycling demand response program in Southern California. All three forecasting models yield accurate forecasts for baseline load and load impact from demand response events. Noticeable rebound effect from demand response events are observed from the dataset.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"09 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

To improve forecasting accuracy for baseline load and load impact from demand response resources, this paper develops three innovative statistical models. These models are regression spline fixed effect model, fixed effect change point model and mixed effect change point model. The models developed are applied to forecast baseline load and load impact from air conditioning cycling demand response program in Southern California. All three forecasting models yield accurate forecasts for baseline load and load impact from demand response events. Noticeable rebound effect from demand response events are observed from the dataset.
预测需求响应资源对负荷的影响
为了提高需求响应资源对基线负荷和负荷影响的预测精度,本文开发了三个创新的统计模型。这些模型分别是回归样条固定效应模型、固定效应变点模型和混合效应变点模型。将所建立的模型应用于预测南加州空调循环需求响应项目的基线负荷和负荷影响。所有三种预测模型都能对基线负载和需求响应事件的负载影响做出准确的预测。从数据集中观察到需求响应事件的明显反弹效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信