H-PMHT with a Poisson measurement model

H. Vu, S. Davey, S. Arulampalam, F. Fletcher, C. Lim
{"title":"H-PMHT with a Poisson measurement model","authors":"H. Vu, S. Davey, S. Arulampalam, F. Fletcher, C. Lim","doi":"10.1109/RADAR.2013.6652030","DOIUrl":null,"url":null,"abstract":"The Histogram Probabilistic Multi-Hypothesis Tracker (H-PMHT) is an efficient multi-target approach to the Track-before-detect (TkBD) problem. The tracking is based on the generation of a synthetic histogram by quantising the energy in the sensor data. The resultant quantised measurement is then modelled using a multinomial distribution and target state estimation is performed via Expectation-Maximisation based mixture modeling. This paper presents an alternative derivation of the H-PMHT based on a Poisson measurement model. The benefits of this new derivation are two-fold. First, direct estimation of the measurement likelihood is now possible under this new formulation, thereby eliminating any need for measurement quantisation. Second, the new derivation results in an improved measure for track quality by incorporating a time-correlated estimate for the target mixing proportions.","PeriodicalId":365285,"journal":{"name":"2013 International Conference on Radar","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2013.6652030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Histogram Probabilistic Multi-Hypothesis Tracker (H-PMHT) is an efficient multi-target approach to the Track-before-detect (TkBD) problem. The tracking is based on the generation of a synthetic histogram by quantising the energy in the sensor data. The resultant quantised measurement is then modelled using a multinomial distribution and target state estimation is performed via Expectation-Maximisation based mixture modeling. This paper presents an alternative derivation of the H-PMHT based on a Poisson measurement model. The benefits of this new derivation are two-fold. First, direct estimation of the measurement likelihood is now possible under this new formulation, thereby eliminating any need for measurement quantisation. Second, the new derivation results in an improved measure for track quality by incorporating a time-correlated estimate for the target mixing proportions.
H-PMHT与泊松测量模型
直方图概率多假设跟踪(H-PMHT)是一种有效的多目标检测前跟踪(TkBD)方法。跟踪是基于通过量化传感器数据中的能量来生成合成直方图。然后使用多项分布对结果量化测量进行建模,并通过基于期望最大化的混合建模执行目标状态估计。本文提出了基于泊松测量模型的H-PMHT的另一种推导方法。这种新的推导的好处是双重的。首先,在这个新公式下,测量可能性的直接估计现在是可能的,从而消除了测量量化的任何需要。其次,新的推导通过结合目标混合比例的时间相关估计来改进跟踪质量的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信