Intrinsic shape context descriptors for deformable shapes

Iasonas Kokkinos, M. Bronstein, R. Litman, A. Bronstein
{"title":"Intrinsic shape context descriptors for deformable shapes","authors":"Iasonas Kokkinos, M. Bronstein, R. Litman, A. Bronstein","doi":"10.1109/CVPR.2012.6247671","DOIUrl":null,"url":null,"abstract":"In this work, we present intrinsic shape context (ISC) descriptors for 3D shapes. We generalize to surfaces the polar sampling of the image domain used in shape contexts: for this purpose, we chart the surface by shooting geodesic outwards from the point being analyzed; `angle' is treated as tantamount to geodesic shooting direction, and radius as geodesic distance. To deal with orientation ambiguity, we exploit properties of the Fourier transform. Our charting method is intrinsic, i.e., invariant to isometric shape transformations. The resulting descriptor is a meta-descriptor that can be applied to any photometric or geometric property field defined on the shape, in particular, we can leverage recent developments in intrinsic shape analysis and construct ISC based on state-of-the-art dense shape descriptors such as heat kernel signatures. Our experiments demonstrate a notable improvement in shape matching on standard benchmarks.","PeriodicalId":177454,"journal":{"name":"2012 IEEE Conference on Computer Vision and Pattern Recognition","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2012.6247671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 169

Abstract

In this work, we present intrinsic shape context (ISC) descriptors for 3D shapes. We generalize to surfaces the polar sampling of the image domain used in shape contexts: for this purpose, we chart the surface by shooting geodesic outwards from the point being analyzed; `angle' is treated as tantamount to geodesic shooting direction, and radius as geodesic distance. To deal with orientation ambiguity, we exploit properties of the Fourier transform. Our charting method is intrinsic, i.e., invariant to isometric shape transformations. The resulting descriptor is a meta-descriptor that can be applied to any photometric or geometric property field defined on the shape, in particular, we can leverage recent developments in intrinsic shape analysis and construct ISC based on state-of-the-art dense shape descriptors such as heat kernel signatures. Our experiments demonstrate a notable improvement in shape matching on standard benchmarks.
可变形形状的内在形状上下文描述符
在这项工作中,我们提出了三维形状的内在形状上下文(ISC)描述符。我们将用于形状上下文的图像域的极采样推广到表面:为此,我们通过从被分析的点向外拍摄测地线来绘制表面;“角度”等同于测地线射击方向,“半径”等同于测地线距离。为了处理方向模糊,我们利用傅里叶变换的性质。我们的绘图方法是固有的,即对等距形状变换是不变的。由此产生的描述符是一个元描述符,可以应用于形状上定义的任何光度或几何属性字段,特别是,我们可以利用内在形状分析的最新发展,并基于最先进的密集形状描述符(如热核签名)构建ISC。我们的实验证明了在标准基准测试中形状匹配的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信