A graph-based approach for biomedical thesaurus expansion

Ikumi Suzuki, Kazuo Hara, M. Shimbo, Yuji Matsumoto
{"title":"A graph-based approach for biomedical thesaurus expansion","authors":"Ikumi Suzuki, Kazuo Hara, M. Shimbo, Yuji Matsumoto","doi":"10.1145/1651318.1651336","DOIUrl":null,"url":null,"abstract":"The addition of new terms to biomedical thesauri is important for keeping pace with new research. In the context of a thesaurus expansion task, we investigate the property of Laplacian diffusion kernel matrices that depreciate pivotal vertices having many links to surrounding vertices. We confirm that this property can be seen on the Laplacian matrix of a graph that we construct from the GENIA corpus (a subset of MEDLINE abstracts) and simulate thesaurus expansion by employing either the Laplacian diffusion kernel matrix, or the adjacency matrix (i.e., cosine similarity), to determine the correct position for new biomedical terms being added to the MeSH thesaurus. Whilst results do not show the desired precision, our approach is shown to be complementary to calculation of cosine similarity between thesaurus terms and we recognize directions for future work.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1651318.1651336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The addition of new terms to biomedical thesauri is important for keeping pace with new research. In the context of a thesaurus expansion task, we investigate the property of Laplacian diffusion kernel matrices that depreciate pivotal vertices having many links to surrounding vertices. We confirm that this property can be seen on the Laplacian matrix of a graph that we construct from the GENIA corpus (a subset of MEDLINE abstracts) and simulate thesaurus expansion by employing either the Laplacian diffusion kernel matrix, or the adjacency matrix (i.e., cosine similarity), to determine the correct position for new biomedical terms being added to the MeSH thesaurus. Whilst results do not show the desired precision, our approach is shown to be complementary to calculation of cosine similarity between thesaurus terms and we recognize directions for future work.
生物医学同义词典扩展的基于图的方法
在生物医学词典中增加新的术语对于跟上新的研究是很重要的。在同义词库扩展任务的背景下,我们研究了拉普拉斯扩散核矩阵的性质,该矩阵贬低了与周围顶点有许多链接的关键顶点。我们从GENIA语料库(MEDLINE摘要的一个子集)构建的图的拉普拉斯矩阵上证实了这一特性,并通过使用拉普拉斯扩散核矩阵或邻接矩阵(即余弦相似度)模拟同义词库扩展,以确定添加到MeSH同义词库中的新生物医学术语的正确位置。虽然结果不显示所需的精度,我们的方法被证明是互补的余弦相似度的计算在同义词典术语和我们认识到未来的工作方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信