Quality-Driven Hierarchical Clustering Algorithm for Service Intelligence Computation

Y. Zhao, Chi-Hung Chi, Chen Ding
{"title":"Quality-Driven Hierarchical Clustering Algorithm for Service Intelligence Computation","authors":"Y. Zhao, Chi-Hung Chi, Chen Ding","doi":"10.1109/SKG.2011.49","DOIUrl":null,"url":null,"abstract":"Clustering is an important technique for intelligence computation such as trust, recommendation, reputation, and requirement elicitation. With the user centric nature of service and the user's lack of prior knowledge on the distribution of the raw data, one challenge is on how to associate user quality requirements on the clustering results with the algorithmic output properties (e.g. number of clusters to be targeted). In this paper, we focus on the hierarchical clustering process and propose two quality-driven hierarchical clustering algorithms, HBH (homogeneity-based hierarchical) and HDH (homogeneity-driven hierarchical) clustering algorithms, with minimum acceptable homogeneity and relative population for each cluster output as their input criteria. Furthermore, we also give a HDH-approximation algorithm in order to address the time performance issue. Experimental study on data sets with different density distribution and dispersion levels shows that the HDH gives the best quality result and HDH-approximation can significantly improve the execution time.","PeriodicalId":184788,"journal":{"name":"2011 Seventh International Conference on Semantics, Knowledge and Grids","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2011.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is an important technique for intelligence computation such as trust, recommendation, reputation, and requirement elicitation. With the user centric nature of service and the user's lack of prior knowledge on the distribution of the raw data, one challenge is on how to associate user quality requirements on the clustering results with the algorithmic output properties (e.g. number of clusters to be targeted). In this paper, we focus on the hierarchical clustering process and propose two quality-driven hierarchical clustering algorithms, HBH (homogeneity-based hierarchical) and HDH (homogeneity-driven hierarchical) clustering algorithms, with minimum acceptable homogeneity and relative population for each cluster output as their input criteria. Furthermore, we also give a HDH-approximation algorithm in order to address the time performance issue. Experimental study on data sets with different density distribution and dispersion levels shows that the HDH gives the best quality result and HDH-approximation can significantly improve the execution time.
面向服务智能计算的质量驱动层次聚类算法
聚类是一种重要的智能计算技术,如信任、推荐、声誉和需求提取。由于服务以用户为中心,用户缺乏对原始数据分布的先验知识,因此如何将用户对聚类结果的质量要求与算法输出属性(例如目标聚类的数量)联系起来是一个挑战。本文重点研究了层次聚类过程,提出了两种质量驱动的层次聚类算法,即HBH (homohomogeneous -based hierarchical)和HDH (homohomogeneous -driven hierarchical)聚类算法,以最小可接受的均匀性和每个聚类输出的相对人口作为输入标准。此外,为了解决时间性能问题,我们还给出了一种hdh近似算法。在不同密度分布和离散程度的数据集上进行的实验研究表明,HDH算法能给出最好的质量结果,并且HDH近似能显著提高执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信