Visualization of Scenarios for the Transition of Oscillations from Harmonic to Chaotic for a Micropolar Kirchhoff-Love Cylindrical Meshed Panel

Е. Ю. Крылова, E. Krylova, И. В. Папкова, I. Papkova, О. А. Салтыкова, O. Saltykova, В. А. Крысько, V. Krysko
{"title":"Visualization of Scenarios for the Transition of Oscillations from Harmonic to Chaotic for a Micropolar Kirchhoff-Love Cylindrical Meshed Panel","authors":"Е. Ю. Крылова, E. Krylova, И. В. Папкова, I. Papkova, О. А. Салтыкова, O. Saltykova, В. А. Крысько, V. Krysko","doi":"10.30987/graphicon-2019-2-66-70","DOIUrl":null,"url":null,"abstract":"On the basis of the kinematic hypotheses of the Kirchhoff-Love built a mathematical model of micropolar cylindrical meshed panels vibrations under the action of a normal distributed load. In order to take into account the size-dependent behavior, the panel material is considered as a Cosser’s pseudocontinuum with constrained particle rotation. The mesh structure is taken into account by the phenomenological continuum model of G. I. Pshenichnov. For a cylindrical panel consisting of two systems of mutually perpendicular edges, a scenario of transition of oscillations from harmonic to chaotic is constructed. It is shown that in the study of the behavior of cylindrical micropolar meshed panels it is necessary to study the nature of the oscillations of longitudinal waves.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-66-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

On the basis of the kinematic hypotheses of the Kirchhoff-Love built a mathematical model of micropolar cylindrical meshed panels vibrations under the action of a normal distributed load. In order to take into account the size-dependent behavior, the panel material is considered as a Cosser’s pseudocontinuum with constrained particle rotation. The mesh structure is taken into account by the phenomenological continuum model of G. I. Pshenichnov. For a cylindrical panel consisting of two systems of mutually perpendicular edges, a scenario of transition of oscillations from harmonic to chaotic is constructed. It is shown that in the study of the behavior of cylindrical micropolar meshed panels it is necessary to study the nature of the oscillations of longitudinal waves.
微极Kirchhoff-Love柱面网格板从谐波到混沌振荡的可视化
基于Kirchhoff-Love的运动学假设,建立了微极圆柱网格板在正态分布载荷作用下振动的数学模型。为了考虑与尺寸相关的行为,将面板材料视为具有约束粒子旋转的Cosser伪连续体。采用G. I. Pshenichnov的现象连续体模型考虑了网格结构。对于由两个相互垂直边缘系统组成的圆柱形面板,构造了振荡从谐波到混沌的过渡情形。结果表明,在研究圆柱微极网格板的性能时,有必要研究纵波的振荡性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信