A Format-Aware Reducer for Scriptable Rewriting of PDF Files

Prashant Anantharaman, Steven Cheung, Nicholas Boorman, M. Locasto
{"title":"A Format-Aware Reducer for Scriptable Rewriting of PDF Files","authors":"Prashant Anantharaman, Steven Cheung, Nicholas Boorman, M. Locasto","doi":"10.1109/spw54247.2022.9833885","DOIUrl":null,"url":null,"abstract":"Sanitizing untrusted input is a significant unsolved problem in defensive cybersecurity and input handling. Even if we assume that a safe, provably correct parser exists to validate the input syntax, processing logic may still require the application of certain transformations of the parser output. For example, parsers traditionally store the parsed objects in a generic tree structure; hence the processing logic needed to modify this structure can be significant. Also, popular parsing tools do not include the functionality to serialize (or unparse) the internal structure back to bytes.This paper argues for the need for a format-aware tool to modify structured files. In particular, we propose adding a reducer to the Parsley PDF checker. The Parsley Reducer— a tool to apply transformations on input dynamically—would allow developers to design and implement rules to transform PDF files. Next, we describe a set of Parsley normalization tools to be used with the Reducer API and showcase their capabilities using several case studies. Finally, we evaluate our normalization approach to demonstrate that (1) the developer effort to design our reducer rules is minimal, (2) tools extract more text from transformed files than the original files, and (3) other popular PDF transformation tools do not apply the corrections we demonstrate.","PeriodicalId":334852,"journal":{"name":"2022 IEEE Security and Privacy Workshops (SPW)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spw54247.2022.9833885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sanitizing untrusted input is a significant unsolved problem in defensive cybersecurity and input handling. Even if we assume that a safe, provably correct parser exists to validate the input syntax, processing logic may still require the application of certain transformations of the parser output. For example, parsers traditionally store the parsed objects in a generic tree structure; hence the processing logic needed to modify this structure can be significant. Also, popular parsing tools do not include the functionality to serialize (or unparse) the internal structure back to bytes.This paper argues for the need for a format-aware tool to modify structured files. In particular, we propose adding a reducer to the Parsley PDF checker. The Parsley Reducer— a tool to apply transformations on input dynamically—would allow developers to design and implement rules to transform PDF files. Next, we describe a set of Parsley normalization tools to be used with the Reducer API and showcase their capabilities using several case studies. Finally, we evaluate our normalization approach to demonstrate that (1) the developer effort to design our reducer rules is minimal, (2) tools extract more text from transformed files than the original files, and (3) other popular PDF transformation tools do not apply the corrections we demonstrate.
用于PDF文件可脚本重写的格式感知减速器
在防御性网络安全和输入处理中,清除不可信输入是一个重要的未解决问题。即使我们假设存在一个安全的、可证明正确的解析器来验证输入语法,处理逻辑可能仍然需要应用解析器输出的某些转换。例如,解析器传统上将解析过的对象存储在一个通用的树结构中;因此,修改此结构所需的处理逻辑可能非常重要。此外,流行的解析工具不包括将内部结构序列化(或反解析)回字节的功能。本文认为需要一种格式感知工具来修改结构化文件。特别是,我们建议在Parsley PDF检查器中添加一个减速器。Parsley Reducer——一个对输入动态应用转换的工具——将允许开发人员设计和实现转换PDF文件的规则。接下来,我们将描述一组与Reducer API一起使用的Parsley规范化工具,并通过几个案例研究展示它们的功能。最后,我们评估了我们的规范化方法,以证明(1)开发人员设计我们的reducer规则的努力是最小的,(2)工具从转换文件中提取的文本比原始文件多,以及(3)其他流行的PDF转换工具不应用我们演示的更正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信