GENERAL ANALYTICAL EXPRESSIONS FOR DEFLECTION AND SLOPE OF EULER-BERNOULLI BEAM UNDER DIFFERENT TYPES OF LOADS AND SUPPORTS

Imran Ali Panhwar
{"title":"GENERAL ANALYTICAL EXPRESSIONS FOR DEFLECTION AND SLOPE OF EULER-BERNOULLI BEAM UNDER DIFFERENT TYPES OF LOADS AND SUPPORTS","authors":"Imran Ali Panhwar","doi":"10.26782/jmcms.2023.06.00003","DOIUrl":null,"url":null,"abstract":"In this research paper, we solve the Euler-Bernoulli beam (EBB) differential equations by taking the general boundary conditions. Instead of finding a solution for the EBB model for a particular load and its particular boundary conditions, we derive the general analytical solution with general boundary conditions by using techniques of integration. The proposed general analytical solutions are neither load specific nor dependent on specific boundary conditions but can be used for any load and any boundary condition without having to integrate again and again. We have taken a general polynomial load function with general boundary conditions, and get the general analytical solution for the deflection and slope parameters of EBB. We find the direct solution for uniform distributed load and linearly varying load for a fixed beam.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2023.06.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research paper, we solve the Euler-Bernoulli beam (EBB) differential equations by taking the general boundary conditions. Instead of finding a solution for the EBB model for a particular load and its particular boundary conditions, we derive the general analytical solution with general boundary conditions by using techniques of integration. The proposed general analytical solutions are neither load specific nor dependent on specific boundary conditions but can be used for any load and any boundary condition without having to integrate again and again. We have taken a general polynomial load function with general boundary conditions, and get the general analytical solution for the deflection and slope parameters of EBB. We find the direct solution for uniform distributed load and linearly varying load for a fixed beam.
欧拉-伯努利梁在不同荷载和支承作用下挠度和斜率的一般解析表达式
本文采用一般边界条件,求解了Euler-Bernoulli梁(EBB)微分方程。本文利用积分技术,推导出具有一般边界条件的一般解析解,而不是寻找具有特定载荷及其特定边界条件的EBB模型的解。所提出的一般解析解既不受载荷的限制,也不依赖于特定的边界条件,可以用于任何载荷和任何边界条件,而不必反复积分。采用具有一般边界条件的一般多项式荷载函数,得到了EBB的挠度和坡度参数的一般解析解。给出了固定梁均布荷载和线性变化荷载的直接解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信