Sparse deconvolution using Gaussian mixtures

I. Santamaria-Caballero, A. Figueiras-Vidal
{"title":"Sparse deconvolution using Gaussian mixtures","authors":"I. Santamaria-Caballero, A. Figueiras-Vidal","doi":"10.1109/DSP.1994.379866","DOIUrl":null,"url":null,"abstract":"We present a new algorithm to recover a sparse signal from a noisy register. The algorithm assumes a new model for the sparse signal that consists of a mixture of narrowband and broadband Gaussian noise both with zero mean. A penalty term which favors solutions driven from this model is added to the usual error cost function and the resultant global cost function is minimized with a gradient-type algorithm. We propose methods for updating the mixture parameters as well as for choosing the weighting parameter for the penalty term. Simulation experiments show that the accuracy of the proposed method is competitive with classical statistical detectors with a lower computational load. The proposed algorithm shows also a good performance when applied to a practical seismic deconvolution problem.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a new algorithm to recover a sparse signal from a noisy register. The algorithm assumes a new model for the sparse signal that consists of a mixture of narrowband and broadband Gaussian noise both with zero mean. A penalty term which favors solutions driven from this model is added to the usual error cost function and the resultant global cost function is minimized with a gradient-type algorithm. We propose methods for updating the mixture parameters as well as for choosing the weighting parameter for the penalty term. Simulation experiments show that the accuracy of the proposed method is competitive with classical statistical detectors with a lower computational load. The proposed algorithm shows also a good performance when applied to a practical seismic deconvolution problem.<>
使用高斯混合稀疏反褶积
提出了一种从噪声寄存器中恢复稀疏信号的新算法。该算法假设了一种新的稀疏信号模型,该信号由窄带和宽带高斯噪声混合组成,均为零均值。在通常的误差代价函数中加入有利于由该模型驱动的解的惩罚项,并使用梯度型算法最小化所得到的全局代价函数。我们提出了更新混合参数和选择惩罚项的加权参数的方法。仿真实验表明,该方法具有较低的计算量,精度可与经典统计检测器相媲美。该算法在实际地震反褶积问题中也显示出良好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信