Randomized Local Extrema for Heuristic Selection in TSP

Q. Liang, S. Rubin
{"title":"Randomized Local Extrema for Heuristic Selection in TSP","authors":"Q. Liang, S. Rubin","doi":"10.1109/IRI.2006.252436","DOIUrl":null,"url":null,"abstract":"It follows from the search randomizations in space-time among candidate heuristics that the optimality of an arbitrary heuristic is unsolvable. There are a countable infinite number of theories that may be decomposed into stronger local proofs. Local inductive randomization depends on domain symmetry for tractability. TSP problems exhibit tentative domain symmetry and potential space-time randomness in domain solution evolution. Heuristics in the domain of the TSP can be found and selected with a suitable representation, randomization, and symmetric induction with a significantly reduced time. Better representation of the TSP problem facilitates a better solution","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

It follows from the search randomizations in space-time among candidate heuristics that the optimality of an arbitrary heuristic is unsolvable. There are a countable infinite number of theories that may be decomposed into stronger local proofs. Local inductive randomization depends on domain symmetry for tractability. TSP problems exhibit tentative domain symmetry and potential space-time randomness in domain solution evolution. Heuristics in the domain of the TSP can be found and selected with a suitable representation, randomization, and symmetric induction with a significantly reduced time. Better representation of the TSP problem facilitates a better solution
TSP中启发式选择的随机局部极值
从候选启发式在时空中的搜索随机性可知,任意启发式的最优性是不可解的。有无数的理论可以分解成更强的局部证明。局部归纳随机化依赖于域对称的可追溯性。TSP问题在域解演化中表现出尝试性的域对称性和潜在的时空随机性。通过适当的表示、随机化和对称归纳,可以在显著减少的时间内找到并选择TSP域中的启发式。更好地表达TSP问题有助于更好地解决问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信