Dynamic sample rate adaptation for long-term IoT sensing applications

U. Kulau, Johannes van Balen, S. Schildt, Felix Büsching, L. Wolf
{"title":"Dynamic sample rate adaptation for long-term IoT sensing applications","authors":"U. Kulau, Johannes van Balen, S. Schildt, Felix Büsching, L. Wolf","doi":"10.1109/WF-IoT.2016.7845437","DOIUrl":null,"url":null,"abstract":"In long-term sensing applications data patterns can vary significantly over time. Often a multitude of sensors are used to measure different types of environmental conditions. Considering such variations it is hard to select a predefined sample rate that guarantees both, high data quality and energy efficiency. Hence, this paper presents a dynamic sample rate adaptation that strikes a balance offering optimal energy efficiency while maintaining high data quality. Based on the general concept of Bollinger Bands, a metric is derived that solely depends on the trend of the measured data itself. A real world measurement in the area of smart farming is used to show the effectiveness of this approach.","PeriodicalId":373932,"journal":{"name":"2016 IEEE 3rd World Forum on Internet of Things (WF-IoT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 3rd World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT.2016.7845437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In long-term sensing applications data patterns can vary significantly over time. Often a multitude of sensors are used to measure different types of environmental conditions. Considering such variations it is hard to select a predefined sample rate that guarantees both, high data quality and energy efficiency. Hence, this paper presents a dynamic sample rate adaptation that strikes a balance offering optimal energy efficiency while maintaining high data quality. Based on the general concept of Bollinger Bands, a metric is derived that solely depends on the trend of the measured data itself. A real world measurement in the area of smart farming is used to show the effectiveness of this approach.
动态采样率适应长期物联网传感应用
在长期传感应用中,数据模式随时间变化很大。通常使用大量的传感器来测量不同类型的环境条件。考虑到这些变化,很难选择一个预定义的采样率,以保证高数据质量和能源效率。因此,本文提出了一种动态采样率自适应,在保持高数据质量的同时提供最佳的能源效率。基于布林带的一般概念,导出了一个仅依赖于测量数据本身趋势的度量。在智能农业领域的一个真实世界的测量被用来显示这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信