Hierarchical Generative Adversarial Networks for Single Image Super-Resolution

Weimin Chen, Yuqing Ma, Xianglong Liu, Yijia Yuan
{"title":"Hierarchical Generative Adversarial Networks for Single Image Super-Resolution","authors":"Weimin Chen, Yuqing Ma, Xianglong Liu, Yijia Yuan","doi":"10.1109/WACV48630.2021.00040","DOIUrl":null,"url":null,"abstract":"Recently, deep convolutional neural network (CNN) have achieved promising performance for single image super-resolution (SISR). However, they usually extract features on a single scale and lack sufficient supervision information, leading to undesired artifacts and unpleasant noise in super-resolution (SR) images. To address this problem, we first propose a hierarchical feature extraction module (HFEM) to extract the features in multiple scales, which helps concentrate on both local textures and global semantics. Then, a hierarchical guided reconstruction module (HGRM) is introduced to reconstruct more natural structural textures in SR images via intermediate supervisions in a progressive manner. Finally, we integrate HFEM and HGRM in a simple yet efficient end-to-end framework named hierarchical generative adversarial networks (HSR-GAN) to recover consistent details, and thus obtain the semantically reasonable and visually realistic results. Extensive experiments on five common datasets demonstrate that our method shows favorable visual quality and superior quantitative performance compared to state-of-the-art methods for SISR.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recently, deep convolutional neural network (CNN) have achieved promising performance for single image super-resolution (SISR). However, they usually extract features on a single scale and lack sufficient supervision information, leading to undesired artifacts and unpleasant noise in super-resolution (SR) images. To address this problem, we first propose a hierarchical feature extraction module (HFEM) to extract the features in multiple scales, which helps concentrate on both local textures and global semantics. Then, a hierarchical guided reconstruction module (HGRM) is introduced to reconstruct more natural structural textures in SR images via intermediate supervisions in a progressive manner. Finally, we integrate HFEM and HGRM in a simple yet efficient end-to-end framework named hierarchical generative adversarial networks (HSR-GAN) to recover consistent details, and thus obtain the semantically reasonable and visually realistic results. Extensive experiments on five common datasets demonstrate that our method shows favorable visual quality and superior quantitative performance compared to state-of-the-art methods for SISR.
单幅图像超分辨率的分层生成对抗网络
近年来,深度卷积神经网络(CNN)在单幅图像超分辨率(SISR)方面取得了良好的表现。然而,它们通常在单一尺度上提取特征,缺乏足够的监督信息,导致超分辨率(SR)图像中出现不希望出现的伪影和令人不快的噪声。为了解决这一问题,我们首先提出了一种分层特征提取模块(HFEM)来提取多尺度的特征,这有助于同时关注局部纹理和全局语义。然后,引入层次引导重建模块(HGRM),通过中间监督逐步重建SR图像中更自然的结构纹理。最后,我们将HFEM和HGRM集成在一个简单高效的端到端框架中,即层次生成对抗网络(HSR-GAN),以恢复一致的细节,从而获得语义合理和视觉逼真的结果。在五个常用数据集上进行的大量实验表明,与最先进的SISR方法相比,我们的方法具有良好的视觉质量和卓越的定量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信