SHORECASTS: A BLIND-TEST OF SHORELINE MODELS

Jennifer Montaño, G. Coco, J. Antolínez, Tomas Beuzen, K. Bryan, L. Cagigal, B. Castelle, M. Davidson, E. Goldstein, Rai Ibaceta Vega, D. Idier, B. Ludka, S. Ansari, F. Méndez, B. Murray, N. Plant, A. Robinet, A. Rueda, N. Sénéchal, Joshua A. Simmons, Kristen D. Splinter, S. Stephens, I. Townend, S. Vitousek, Kilian Vos
{"title":"SHORECASTS: A BLIND-TEST OF SHORELINE MODELS","authors":"Jennifer Montaño, G. Coco, J. Antolínez, Tomas Beuzen, K. Bryan, L. Cagigal, B. Castelle, M. Davidson, E. Goldstein, Rai Ibaceta Vega, D. Idier, B. Ludka, S. Ansari, F. Méndez, B. Murray, N. Plant, A. Robinet, A. Rueda, N. Sénéchal, Joshua A. Simmons, Kristen D. Splinter, S. Stephens, I. Townend, S. Vitousek, Kilian Vos","doi":"10.1142/9789811204487_0055","DOIUrl":null,"url":null,"abstract":"Predictions of shoreline change are of great societal importance, but models tend to be tested and tuned for the specific site of interest. To overcome this issue and test the ability of numerical models to simulate shoreline change over the medium scale (order of years) we have organized a non-competitive competition where participants were given data to train their model (1999-2014) and data to predict seasonal to inter-annual future changes (2014-2017). Participants were shown the observed shoreline changes only after submission of their modelling results. Overall, 19 numerical models were tested, the vast majority falling in the broad categories of \"hybrid models\" or \"machine learning\". Models were able to reproduce the mean characteristics of shoreline change but often failed to reproduce the observed rapid changes induced by storms.","PeriodicalId":254775,"journal":{"name":"Coastal Sediments 2019","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Sediments 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811204487_0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Predictions of shoreline change are of great societal importance, but models tend to be tested and tuned for the specific site of interest. To overcome this issue and test the ability of numerical models to simulate shoreline change over the medium scale (order of years) we have organized a non-competitive competition where participants were given data to train their model (1999-2014) and data to predict seasonal to inter-annual future changes (2014-2017). Participants were shown the observed shoreline changes only after submission of their modelling results. Overall, 19 numerical models were tested, the vast majority falling in the broad categories of "hybrid models" or "machine learning". Models were able to reproduce the mean characteristics of shoreline change but often failed to reproduce the observed rapid changes induced by storms.
海岸线预测:海岸线模型的盲测
海岸线变化的预测具有重要的社会意义,但模型往往需要针对特定的兴趣点进行测试和调整。为了克服这一问题并测试数值模型在中等尺度(年数量级)上模拟海岸线变化的能力,我们组织了一次非竞争性竞赛,参与者获得了数据来训练他们的模型(1999-2014)和数据来预测季节性到年际的未来变化(2014-2017)。参加者只有在提交模拟结果后,才会看到观察到的海岸线变化。总共测试了19个数值模型,其中绝大多数属于“混合模型”或“机器学习”的大类。模式能够再现海岸线变化的平均特征,但往往不能再现观测到的由风暴引起的快速变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信