Detecting Aberrant Values and Their Influence on the Time Series Forecast

A. Bărbulescu, C. Dumitriu, F. Dragomir
{"title":"Detecting Aberrant Values and Their Influence on the Time Series Forecast","authors":"A. Bărbulescu, C. Dumitriu, F. Dragomir","doi":"10.1109/ICECCME52200.2021.9591085","DOIUrl":null,"url":null,"abstract":"This article addresses the influence of outliers on building time series models. Two methods for detecting aberrant values are discussed, and models are built for the studied data series in the outliers' presence and absence. Data used consisted in the annual precipitation series recorded at Sulina (Romania). The models have been further employed for generating precipitation fields. This process shows a good concordance of the historical data and the forecast in terms of mean, minimum, maximum values, and minimum recorded precipitation in two, five, seven, and ten successive years. The results show that the field generated after the outliers' removal is better in terms of ten statistical indicators.","PeriodicalId":102785,"journal":{"name":"2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCME52200.2021.9591085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article addresses the influence of outliers on building time series models. Two methods for detecting aberrant values are discussed, and models are built for the studied data series in the outliers' presence and absence. Data used consisted in the annual precipitation series recorded at Sulina (Romania). The models have been further employed for generating precipitation fields. This process shows a good concordance of the historical data and the forecast in terms of mean, minimum, maximum values, and minimum recorded precipitation in two, five, seven, and ten successive years. The results show that the field generated after the outliers' removal is better in terms of ten statistical indicators.
异常值的检测及其对时间序列预测的影响
本文讨论了异常值对建立时间序列模型的影响。讨论了两种异常值的检测方法,并对研究的数据序列在异常值存在和不存在的情况下建立了模型。所使用的数据包括在Sulina(罗马尼亚)记录的年降水量系列。这些模型已进一步用于降水场的生成。该过程在连续2年、连续5年、连续7年和连续10年的平均、最小值、最大值和最小值方面显示了历史资料与预报的良好一致性。结果表明,在10个统计指标上,去除离群值后产生的场是更好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信