An Experimental Correlation of Quenching Temperature Under Top-Down Reflooding in a Vertical Tube

Yan-ping Huang, Xuemei Lang, Bingde Chen
{"title":"An Experimental Correlation of Quenching Temperature Under Top-Down Reflooding in a Vertical Tube","authors":"Yan-ping Huang, Xuemei Lang, Bingde Chen","doi":"10.1115/imece1999-1129","DOIUrl":null,"url":null,"abstract":"\n A quenching experiment under top-down reflooding in a vertical tube was performed by adopting the transient hot block quenching test technique. The temperature history on the inner wall of test tube was calculated by using a quasi-steady-state two-dimension numerical technique, and the intersection of double tangent lines was used to determine the location and the time of the quench front. Based on some theoretical models of quenching temperature, at the same time, the effect of flow parameters in the tube during quenching was taken into account, a semi-empirical correlation for quenching temperature under the low pressure and low mass flow rate is presented in this paper. It is as follows:Tq−TsTo−Ts=11.8362(Ts−Tf,inTo−Ts)−0.0714[(cρk)w]0.2938×G0.0251×(Ts−Tf,in)−0.3145 The parameter range of this correlation is as follows: system pressure: 0.31∼0.88MPa: mass flux: 17.7∼902.kg/m2s; inlet subcooling: 3∼77°C; initial hot-wall temperature: 450∼600 °C.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A quenching experiment under top-down reflooding in a vertical tube was performed by adopting the transient hot block quenching test technique. The temperature history on the inner wall of test tube was calculated by using a quasi-steady-state two-dimension numerical technique, and the intersection of double tangent lines was used to determine the location and the time of the quench front. Based on some theoretical models of quenching temperature, at the same time, the effect of flow parameters in the tube during quenching was taken into account, a semi-empirical correlation for quenching temperature under the low pressure and low mass flow rate is presented in this paper. It is as follows:Tq−TsTo−Ts=11.8362(Ts−Tf,inTo−Ts)−0.0714[(cρk)w]0.2938×G0.0251×(Ts−Tf,in)−0.3145 The parameter range of this correlation is as follows: system pressure: 0.31∼0.88MPa: mass flux: 17.7∼902.kg/m2s; inlet subcooling: 3∼77°C; initial hot-wall temperature: 450∼600 °C.
垂直管内自顶向下回流淬火温度的实验关联
采用瞬态热块淬火试验技术,进行了垂直管内自上而下回流淬火试验。采用准稳态二维数值计算技术计算了试管内壁的温度历史,并利用双切线的交点确定了淬火锋的位置和时间。在现有的淬火温度理论模型的基础上,考虑淬火过程中管内流动参数的影响,建立了低压低质量流量条件下淬火温度的半经验关系式。Tq−TsTo−Ts=11.8362(Ts−Tf,inTo−Ts)−0.0714[(cρk)w]0.2938×G0.0251×(Ts−Tf,in)−0.3145,该相关性的参数范围为:系统压力:0.31 ~ 0.88MPa;质量通量:17.7 ~ 902 kg/m2s;进口过冷:3 ~ 77°C;初始热壁温度:450 ~ 600°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信