Domain named entity recognition method based on skip-gram model

Feng Yan-hong, Yu Hong, Sun Geng, Yu Xun-ran
{"title":"Domain named entity recognition method based on skip-gram model","authors":"Feng Yan-hong, Yu Hong, Sun Geng, Yu Xun-ran","doi":"10.1109/EIIS.2017.8298655","DOIUrl":null,"url":null,"abstract":"Traditional domain named entity recognition (NER) methods mainly depended on manual features and were implemented by machine learning methods. These features have no capability to express semantic meaning and these methods are very sensitive for artificial features. To resolve these problems, a method based on Skip-gram model is proposed in this paper. In this method, using word embedding with semantic meaning as features, named entity recognition problem is straightly modeled as Skip-gram model, so it achieves end-to-end solution. Domain characteristics are integrated into this model for further improvement in result. The experiment is carried on Sogou and domain corpus. It shows that the proposed method can improve Recall, Precision and F measure of domain named entity recognition.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Traditional domain named entity recognition (NER) methods mainly depended on manual features and were implemented by machine learning methods. These features have no capability to express semantic meaning and these methods are very sensitive for artificial features. To resolve these problems, a method based on Skip-gram model is proposed in this paper. In this method, using word embedding with semantic meaning as features, named entity recognition problem is straightly modeled as Skip-gram model, so it achieves end-to-end solution. Domain characteristics are integrated into this model for further improvement in result. The experiment is carried on Sogou and domain corpus. It shows that the proposed method can improve Recall, Precision and F measure of domain named entity recognition.
基于skip-gram模型的域名实体识别方法
传统的域名实体识别方法主要依靠人工特征,采用机器学习方法实现。这些特征没有表达语义的能力,而且这些方法对人工特征非常敏感。为了解决这些问题,本文提出了一种基于Skip-gram模型的方法。该方法以语义词嵌入为特征,将命名实体识别问题直接建模为Skip-gram模型,实现了端到端的解决。为了进一步改进结果,将领域特征集成到该模型中。在搜狗和领域语料库上进行了实验。结果表明,该方法可以提高域名实体识别的查全率、查准率和F测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信