Optimization of Saleman Travelling Problem Using Genetic Algorithm with Combination of Order and Random Crossover

Muhammad Firdaus Shafie, F. Ahmad, Muhammad Khusairi Osman, Ahmad Puad Ismail, K. A. Ahmad, S. Z. Yahaya, M. Idris, Anwar Hassan Ibrahim
{"title":"Optimization of Saleman Travelling Problem Using Genetic Algorithm with Combination of Order and Random Crossover","authors":"Muhammad Firdaus Shafie, F. Ahmad, Muhammad Khusairi Osman, Ahmad Puad Ismail, K. A. Ahmad, S. Z. Yahaya, M. Idris, Anwar Hassan Ibrahim","doi":"10.1109/ICCSCE58721.2023.10237137","DOIUrl":null,"url":null,"abstract":"Traveling salesman problem (TSP) is a problem of determining the shortest path for a salesman to take to visit all cities. Although a small number of cities is easy to solve, as the number of cities increases, it’s not possible to solve in polynomial time as it was a combinatorial nondeterministic polynomial (NP-hard) problem. Hence, this project is implementing a genetic algorithm (GA) to solve TSP using Python programming. The focus of this paper is to analyze the GA using order crossover (OX) and random crossover (RX) and propose a combination mechanism, direct combination (OX-RX) and Dynamic Linear combination (OXRX-Linear) to optimize TSP. We test GA for OX and RX in a random set of cities, up to 75 total cities. Then compare the result of the proposed combination OX-RX and OX-RXLinear. The result shows that both proposed combined mechanisms OX-RX and OX-RX-Linear improve the performance of GA in solving TSP.","PeriodicalId":287947,"journal":{"name":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE58721.2023.10237137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traveling salesman problem (TSP) is a problem of determining the shortest path for a salesman to take to visit all cities. Although a small number of cities is easy to solve, as the number of cities increases, it’s not possible to solve in polynomial time as it was a combinatorial nondeterministic polynomial (NP-hard) problem. Hence, this project is implementing a genetic algorithm (GA) to solve TSP using Python programming. The focus of this paper is to analyze the GA using order crossover (OX) and random crossover (RX) and propose a combination mechanism, direct combination (OX-RX) and Dynamic Linear combination (OXRX-Linear) to optimize TSP. We test GA for OX and RX in a random set of cities, up to 75 total cities. Then compare the result of the proposed combination OX-RX and OX-RXLinear. The result shows that both proposed combined mechanisms OX-RX and OX-RX-Linear improve the performance of GA in solving TSP.
基于有序与随机交叉相结合的遗传算法优化销售员出行问题
旅行推销员问题(TSP)是确定一个推销员访问所有城市所采取的最短路径的问题。虽然少数城市很容易解决,但随着城市数量的增加,它不可能在多项式时间内解决,因为它是一个组合不确定性多项式(NP-hard)问题。因此,本项目使用Python编程实现遗传算法(GA)来解决TSP问题。本文重点分析了基于有序交叉(OX)和随机交叉(RX)的遗传算法,提出了直接组合(OX-RX)和动态线性组合(OXRX-Linear)优化TSP的组合机制。我们在一组随机的城市中测试了OX和RX的GA,总共有75个城市。然后比较所提出的OX-RX和OX-RXLinear组合的结果。结果表明,提出的OX-RX和OX-RX- linear组合机制提高了遗传算法求解TSP的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信