A novel approach based on differential evolution for blind deconvolution

Kai Kang, Yang Cao, Zengfu Wang
{"title":"A novel approach based on differential evolution for blind deconvolution","authors":"Kai Kang, Yang Cao, Zengfu Wang","doi":"10.1109/ICACI.2016.7449813","DOIUrl":null,"url":null,"abstract":"Blind deconvolution refers to a class of problems of recovering a sharp version of a blurred image without any information about the blur kernel. In this paper, we propose a novel approach for blind deconvolution based on differential evolution (DE) algorithm, which is arguably one of the most powerful stochastic real-parameter optimization algorithms. Thanks to DE algorithm, various non-conjugate kernel priors, which can be used to effectively restrain the estimated kernel from unexpected situations such as delta kernel, are prone to be introduced to the proposed approach. In order to accelerate the computation speed, we relax the image prior, utilizing the Gaussian prior instead of the well-known sparse prior. Then the optimization problem turns to be convex, what's more, the optimal solution can be effectively solved in frequency domain. In addition, we use the kernel prior cost to propose candidate solutions to speed up the computation further. Finally, given the estimated kernel, we estimate the sharp image by sparse prior. Experimental results and comparisons demonstrate the effectiveness of our method.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Blind deconvolution refers to a class of problems of recovering a sharp version of a blurred image without any information about the blur kernel. In this paper, we propose a novel approach for blind deconvolution based on differential evolution (DE) algorithm, which is arguably one of the most powerful stochastic real-parameter optimization algorithms. Thanks to DE algorithm, various non-conjugate kernel priors, which can be used to effectively restrain the estimated kernel from unexpected situations such as delta kernel, are prone to be introduced to the proposed approach. In order to accelerate the computation speed, we relax the image prior, utilizing the Gaussian prior instead of the well-known sparse prior. Then the optimization problem turns to be convex, what's more, the optimal solution can be effectively solved in frequency domain. In addition, we use the kernel prior cost to propose candidate solutions to speed up the computation further. Finally, given the estimated kernel, we estimate the sharp image by sparse prior. Experimental results and comparisons demonstrate the effectiveness of our method.
一种基于差分进化的盲反卷积新方法
盲反卷积是指在没有任何关于模糊核的信息的情况下恢复模糊图像的清晰版本的一类问题。本文提出了一种基于差分进化算法的盲反卷积算法,差分进化算法是目前最强大的随机实参数优化算法之一。由于DE算法,可以将各种非共轭核先验引入到该方法中,这些非共轭核先验可以有效地抑制估计核不受诸如δ核等意外情况的影响。为了加快计算速度,我们放松了图像先验,利用高斯先验代替了众所周知的稀疏先验。这样,优化问题就变成了一个凸问题,并且可以在频域有效地求解最优解。此外,我们利用核先验代价提出候选解,进一步加快计算速度。最后,给出估计的核,利用稀疏先验估计出清晰图像。实验结果和对比验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信