Deep learning-based approach for malware classification

Harisha Airbail, G. Mamatha, Rahul V. Hedge, P. R. Sushmika, Reshma Kumari, K. Sandeep
{"title":"Deep learning-based approach for malware classification","authors":"Harisha Airbail, G. Mamatha, Rahul V. Hedge, P. R. Sushmika, Reshma Kumari, K. Sandeep","doi":"10.1504/IJIDSS.2021.115226","DOIUrl":null,"url":null,"abstract":"Any program that exhibit furtive demonstrations against the interests of the PC client can be considered as a malware. These baleful programs can play out varieties of different capacities, for example, taking, encoding, or erasing dainty information, changing or commandeering centre processing capacities, and examining clients' computer action without their consent. Today, malware is utilised by both governments and black hat hackers, to take individual, financial, or business data. In this paper, put forward a strategy for arranging malware utilising profound learning procedures. Malware binaries are pictured as greyscale pictures, with the perception that for some malware families, the pictures having a place with a similar family show up fundamentally the same as in surface and design. A standard picture highlights grouping strategy is proposed. The exploratory outcomes give 97.45% arrangement classification on a malware database of 9,339 examples with 25 diverse malware families.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2021.115226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Any program that exhibit furtive demonstrations against the interests of the PC client can be considered as a malware. These baleful programs can play out varieties of different capacities, for example, taking, encoding, or erasing dainty information, changing or commandeering centre processing capacities, and examining clients' computer action without their consent. Today, malware is utilised by both governments and black hat hackers, to take individual, financial, or business data. In this paper, put forward a strategy for arranging malware utilising profound learning procedures. Malware binaries are pictured as greyscale pictures, with the perception that for some malware families, the pictures having a place with a similar family show up fundamentally the same as in surface and design. A standard picture highlights grouping strategy is proposed. The exploratory outcomes give 97.45% arrangement classification on a malware database of 9,339 examples with 25 diverse malware families.
基于深度学习的恶意软件分类方法
任何对PC客户端的利益进行偷偷摸摸的演示的程序都可以被认为是恶意软件。这些恶意程序可以发挥各种不同的能力,例如,获取、编码或删除重要信息,改变或征用中心处理能力,以及在未经客户同意的情况下检查客户的计算机操作。如今,政府和黑帽黑客都在利用恶意软件来获取个人、金融或商业数据。本文提出了一种利用深度学习过程安排恶意软件的策略。恶意软件二进制文件被描绘成灰度图片,因为人们认为,对于一些恶意软件家族来说,具有相似家族的图片在表面和设计上基本相同。提出了一种标准的图像亮点分组策略。在一个包含25个不同恶意软件家族的9339个样本的恶意软件数据库上,探索性结果给出了97.45%的排序分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信