Large RDF representation framework for GPUs case study key-value storage and binary triple pattern

Chidchanok Choksuchat, C. Chantrapornchai
{"title":"Large RDF representation framework for GPUs case study key-value storage and binary triple pattern","authors":"Chidchanok Choksuchat, C. Chantrapornchai","doi":"10.1109/ICSEC.2013.6694745","DOIUrl":null,"url":null,"abstract":"In this paper, we present the experimental framework which operates the search of RDF data in GPUs. We explore the use of triple storages for query processing in GPUs. From the user query, the SPARQL query is generated by the Middleware Jena. Then, the corresponding triples are searched. The triple search space is large and impossible to load into GPU memory to perform the parallel search. Proper representations are studied to storage data in GPUs for an effective search. We compare the key-value storage in Cassandra and binary triple storage using HDT. The experiments are done using the dataset, DBpedia and Freebase dataset. It is found that HDT compression can compress the data over ten times and the HDT format can be used to store large triples passed through the GPUs. The paper discusses qualitative and quantitative results from both manners. The pros and cons of them can further be combined properly in the further.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present the experimental framework which operates the search of RDF data in GPUs. We explore the use of triple storages for query processing in GPUs. From the user query, the SPARQL query is generated by the Middleware Jena. Then, the corresponding triples are searched. The triple search space is large and impossible to load into GPU memory to perform the parallel search. Proper representations are studied to storage data in GPUs for an effective search. We compare the key-value storage in Cassandra and binary triple storage using HDT. The experiments are done using the dataset, DBpedia and Freebase dataset. It is found that HDT compression can compress the data over ten times and the HDT format can be used to store large triples passed through the GPUs. The paper discusses qualitative and quantitative results from both manners. The pros and cons of them can further be combined properly in the further.
用于gpu的大型RDF表示框架案例研究键值存储和二进制三重模式
在本文中,我们提出了在gpu中操作RDF数据搜索的实验框架。我们探索在gpu中使用三重存储进行查询处理。从用户查询中,中间件Jena生成SPARQL查询。然后,搜索相应的三元组。三重搜索空间很大,不可能加载到GPU内存中执行并行搜索。研究了在图形处理器中存储数据的适当表示,以实现有效的搜索。我们比较了Cassandra中的键值存储和使用HDT的二进制三重存储。实验使用了数据库、DBpedia和Freebase数据集。研究发现HDT压缩可以将数据压缩十倍以上,并且HDT格式可以用于存储通过gpu的大三元组。本文讨论了两种方法的定性和定量结果。他们的优点和缺点可以进一步适当地结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信