On the temperature behavior of hot-carrier degradation

S. Tyaginov, M. Jech, P. Sharma, J. Franco, B. Kaczer, T. Grasser
{"title":"On the temperature behavior of hot-carrier degradation","authors":"S. Tyaginov, M. Jech, P. Sharma, J. Franco, B. Kaczer, T. Grasser","doi":"10.1109/IIRW.2015.7437088","DOIUrl":null,"url":null,"abstract":"We show that - in contrast to previous findings - hot-carrier degradation (HCD) in scaled nMOSFETs with a channel length of 44 nm appears to be weaker at elevated temperatures. However, the distance between degradation traces obtained at 25 and 75° C reduces as the stress voltages increase and at a certain voltage the changes of the linear drain current measured at 25 and 75° C are almost identical in the entire stress time window. We apply our physics-based model for hot-carrier degradation to analyze the temperature behavior of this detrimental phenomenon. This behavior is interpreted in terms of competing single- and multiple-carrier processes of Si-H bond dissociation with the corresponding rates having the opposite temperature dependencies. One of the most important aspects relevant to the temperature behavior of HCD is the bond vibrational life-time which decreases with the temperature.","PeriodicalId":120239,"journal":{"name":"2015 IEEE International Integrated Reliability Workshop (IIRW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Integrated Reliability Workshop (IIRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2015.7437088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that - in contrast to previous findings - hot-carrier degradation (HCD) in scaled nMOSFETs with a channel length of 44 nm appears to be weaker at elevated temperatures. However, the distance between degradation traces obtained at 25 and 75° C reduces as the stress voltages increase and at a certain voltage the changes of the linear drain current measured at 25 and 75° C are almost identical in the entire stress time window. We apply our physics-based model for hot-carrier degradation to analyze the temperature behavior of this detrimental phenomenon. This behavior is interpreted in terms of competing single- and multiple-carrier processes of Si-H bond dissociation with the corresponding rates having the opposite temperature dependencies. One of the most important aspects relevant to the temperature behavior of HCD is the bond vibrational life-time which decreases with the temperature.
热载流子降解的温度行为研究
我们发现,与之前的研究结果相反,通道长度为44 nm的缩放nmosfet中的热载流子降解(HCD)在高温下表现得更弱。然而,在25°C和75°C下获得的退化迹线之间的距离随着应力电压的增加而减小,并且在一定电压下,在25°C和75°C下测量的线性漏极电流的变化在整个应力时间窗内几乎相同。我们应用基于物理的热载流子降解模型来分析这种有害现象的温度行为。这种行为可以解释为Si-H键解离的单载流子和多载流子过程,其相应的速率具有相反的温度依赖性。与HCD的温度行为有关的一个最重要的方面是键的振动寿命,它随温度的升高而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信