A Brief Survey on 3D Semantic Segmentation of Lidar Point Cloud with Deep Learning

Authors
{"title":"A Brief Survey on 3D Semantic Segmentation of Lidar Point Cloud with Deep Learning","authors":"Authors","doi":"10.1109/NILES53778.2021.9600493","DOIUrl":null,"url":null,"abstract":"3D semantic segmentation is a fundamental task for many applications like Autonomous Driving. Recent work shows the capability of Deep Neural Networks in labelling 3D point clouds of major sensors like: LiDAR and Radar. The main challenge that faces this task is the nature of 3D point clouds being unordered and spatially-uncorrelated, making it different in terms of processing algorithms than the images. In addition to that, a point cloud usually needs higher processing power than the images if it's processed in its raw nature. In this paper, we will review different deep learning methods for 3D semantic segmentation, examples of the widely used datasets in addition to the evaluation metrics.","PeriodicalId":249153,"journal":{"name":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES53778.2021.9600493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D semantic segmentation is a fundamental task for many applications like Autonomous Driving. Recent work shows the capability of Deep Neural Networks in labelling 3D point clouds of major sensors like: LiDAR and Radar. The main challenge that faces this task is the nature of 3D point clouds being unordered and spatially-uncorrelated, making it different in terms of processing algorithms than the images. In addition to that, a point cloud usually needs higher processing power than the images if it's processed in its raw nature. In this paper, we will review different deep learning methods for 3D semantic segmentation, examples of the widely used datasets in addition to the evaluation metrics.
基于深度学习的激光雷达点云三维语义分割研究综述
3D语义分割是自动驾驶等许多应用程序的基本任务。最近的工作显示了深度神经网络在标记主要传感器(如激光雷达和雷达)的3D点云方面的能力。这项任务面临的主要挑战是3D点云的无序和空间不相关的性质,这使得它在处理算法方面与图像不同。除此之外,如果对原始图像进行处理,点云通常需要比图像更高的处理能力。在本文中,我们将回顾用于3D语义分割的不同深度学习方法,以及广泛使用的数据集示例和评估指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信