Tensor LU and QR decompositions and their randomized algorithms

Yuefeng Zhu, Yimin Wei
{"title":"Tensor LU and QR decompositions and their randomized algorithms","authors":"Yuefeng Zhu, Yimin Wei","doi":"10.52547/cmcma.1.1.1","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two decompositions extended from matrices to tensors, including LU and QR decompositions with their rank-revealing and randomized variations. We give the growth order analysis of error of the tensor QR (t-QR) and tensor LU (t-LU) decompositions. Growth order of error and running time are shown by numerical examples. We test our methods by compressing and analyzing the image-based data, showing that the performance of tensor randomized QR decomposition is better than the tensor randomized SVD (t-rSVD) in terms of the accuracy, running time and memory. Copyright c (cid:13) 2022 Shahid Beheshti University.","PeriodicalId":207178,"journal":{"name":"Computational Mathematics and Computer Modeling with Applications (CMCMA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Computer Modeling with Applications (CMCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/cmcma.1.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose two decompositions extended from matrices to tensors, including LU and QR decompositions with their rank-revealing and randomized variations. We give the growth order analysis of error of the tensor QR (t-QR) and tensor LU (t-LU) decompositions. Growth order of error and running time are shown by numerical examples. We test our methods by compressing and analyzing the image-based data, showing that the performance of tensor randomized QR decomposition is better than the tensor randomized SVD (t-rSVD) in terms of the accuracy, running time and memory. Copyright c (cid:13) 2022 Shahid Beheshti University.
张量LU和QR分解及其随机化算法
本文提出了两种从矩阵扩展到张量的分解方法,包括LU分解和QR分解,它们具有揭示秩和随机变化的特性。给出了张量QR (t-QR)和张量LU (t-LU)分解误差的生长阶分析。通过数值算例说明了误差的增长顺序和运行时间。我们通过压缩和分析基于图像的数据来测试我们的方法,结果表明,张量随机QR分解在精度、运行时间和内存方面都优于张量随机SVD (t-rSVD)。沙希德·贝赫什蒂大学版权所有
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信