Integrated ABB and DVS: A Post-silicon Tuning Approach for Parametric Yield Enhancement in Sub-45nm CMOS Technology

Sunil Dutt, J. Pidanic, Z. Nemec, Sukumar Nandi, G. Trivedi
{"title":"Integrated ABB and DVS: A Post-silicon Tuning Approach for Parametric Yield Enhancement in Sub-45nm CMOS Technology","authors":"Sunil Dutt, J. Pidanic, Z. Nemec, Sukumar Nandi, G. Trivedi","doi":"10.1109/RADIOELEK.2019.8733444","DOIUrl":null,"url":null,"abstract":"Over the past decade, process parameter variations have been one of the key design challenges. At circuit level of abstraction, process parameter variations cause deviation in the design specifications which threaten the parametric yield, resulting cost implication on the semiconductor industry. Post-silicon tuning, such as Adaptive Body Bias (ABB) and Dynamic Voltage Scaling (DVS) are the most commonly used techniques to mitigate the impacts of process parameter variations. However, since process parameter variations are getting aggravated with continued CMOS technology scaling, the achievable performance by ABB or DVS alone is becoming limited. In this paper, we first examine the effect of process parameter variations on parametric yield loss. Further, we propose a framework that integrates ABB and DVS techniques to effectively mitigate the impacts of process parameter variations even for sub-45nm CMOS technology. We test the proposed approach w.r.t. Hybrid Redundant Multiply-and-Accumulate (HR-MAC) unit, however the proposed approach can be utilized for any digital circuit.","PeriodicalId":336454,"journal":{"name":"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2019.8733444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, process parameter variations have been one of the key design challenges. At circuit level of abstraction, process parameter variations cause deviation in the design specifications which threaten the parametric yield, resulting cost implication on the semiconductor industry. Post-silicon tuning, such as Adaptive Body Bias (ABB) and Dynamic Voltage Scaling (DVS) are the most commonly used techniques to mitigate the impacts of process parameter variations. However, since process parameter variations are getting aggravated with continued CMOS technology scaling, the achievable performance by ABB or DVS alone is becoming limited. In this paper, we first examine the effect of process parameter variations on parametric yield loss. Further, we propose a framework that integrates ABB and DVS techniques to effectively mitigate the impacts of process parameter variations even for sub-45nm CMOS technology. We test the proposed approach w.r.t. Hybrid Redundant Multiply-and-Accumulate (HR-MAC) unit, however the proposed approach can be utilized for any digital circuit.
集成ABB和DVS:在Sub-45nm CMOS技术参数良率提高的后硅调谐方法
在过去的十年中,工艺参数的变化一直是关键的设计挑战之一。在电路抽象层面,工艺参数的变化会导致设计规范的偏差,从而威胁到参数成品率,从而对半导体行业产生成本影响。后硅调谐,如自适应体偏置(ABB)和动态电压缩放(DVS)是减轻工艺参数变化影响的最常用技术。然而,由于工艺参数的变化随着CMOS技术的持续扩展而变得越来越严重,仅由ABB或DVS可实现的性能变得有限。在本文中,我们首先考察了工艺参数变化对参数良率损失的影响。此外,我们提出了一个集成ABB和DVS技术的框架,以有效减轻工艺参数变化的影响,即使是在45纳米以下的CMOS技术。我们使用混合冗余乘法和累加(HR-MAC)单元对所提出的方法进行了测试,但是所提出的方法可以用于任何数字电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信