Analytical solutions of equilibrium points of the standard Kuramoto model: 3 and 4 oscillators

Xin Xin, Takanori Kikkawa, Yannian Liu
{"title":"Analytical solutions of equilibrium points of the standard Kuramoto model: 3 and 4 oscillators","authors":"Xin Xin, Takanori Kikkawa, Yannian Liu","doi":"10.1109/ACC.2016.7525284","DOIUrl":null,"url":null,"abstract":"This paper concerns the problem of how to obtain analytically all equilibrium points of the standard Kuramoto model (with all-to-all uniform coupling) having any natural frequencies and coupling gain. As an initial effort to solve this challenging problem, for the Kuramoto model with 3 (respectively 4) oscillators, to obtain analytically all equilibrium points, we show that we need to solve a polynomial equation of the sine of the phase of an oscillator with the highest order of 6 (respectively 14). For 3 oscillators, this polynomial equation with numerical examples shows that the maximal number of distinct equilibrium points for any natural frequencies and coupling gain is 6. For 4 oscillators, this paper shows theoretically that the maximal number of distinct equilibrium points is not greater than 14, and presents two numerical examples to show the existence of 10 distinct equilibrium points. From the numerical investigation carried out in this study, it is a conjecture that the maximal number of distinct equilibrium points of 4 oscillators for all natural frequencies and coupling gain is 10. This paper also presents numerical examples to investigate the synchronization of the oscillators and convergence to stable equilibrium points.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper concerns the problem of how to obtain analytically all equilibrium points of the standard Kuramoto model (with all-to-all uniform coupling) having any natural frequencies and coupling gain. As an initial effort to solve this challenging problem, for the Kuramoto model with 3 (respectively 4) oscillators, to obtain analytically all equilibrium points, we show that we need to solve a polynomial equation of the sine of the phase of an oscillator with the highest order of 6 (respectively 14). For 3 oscillators, this polynomial equation with numerical examples shows that the maximal number of distinct equilibrium points for any natural frequencies and coupling gain is 6. For 4 oscillators, this paper shows theoretically that the maximal number of distinct equilibrium points is not greater than 14, and presents two numerical examples to show the existence of 10 distinct equilibrium points. From the numerical investigation carried out in this study, it is a conjecture that the maximal number of distinct equilibrium points of 4 oscillators for all natural frequencies and coupling gain is 10. This paper also presents numerical examples to investigate the synchronization of the oscillators and convergence to stable equilibrium points.
标准Kuramoto模型平衡点的解析解:3和4振子
本文讨论了如何解析地获得具有任意固有频率和耦合增益的标准Kuramoto模型(全对全均匀耦合)的所有平衡点。作为解决这一具有挑战性的问题的初步努力,对于具有3(分别为4)振子的Kuramoto模型,为了解析地获得所有平衡点,我们表明我们需要求解最高阶为6(分别为14)的振子相位正弦的多项式方程。对于3个振子,该多项式方程与数值算例表明,对于任意固有频率和耦合增益,不同平衡点的最大个数为6。对于4振子,从理论上证明了不同平衡点的最大个数不大于14,并给出了两个数值例子来证明10个不同平衡点的存在性。从本研究的数值研究中可以推测,在所有固有频率和耦合增益下,4个振子的不同平衡点的最大数目为10。文中还通过数值算例研究了振子的同步性和收敛到稳定平衡点的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信