Aresh Dadlani, Muthukrishnan Senthil Kumar, Kiseon Kim, F. Sahneh
{"title":"Transient analysis of a resource-limited recovery policy for epidemics: A retrial queueing approach","authors":"Aresh Dadlani, Muthukrishnan Senthil Kumar, Kiseon Kim, F. Sahneh","doi":"10.1109/SARNOF.2016.7846752","DOIUrl":null,"url":null,"abstract":"Knowledge on the dynamics of standard epidemic models and their variants over complex networks has been well-established primarily in the stationary regime, with relatively little light shed on their transient behavior. In this paper, we analyze the transient characteristics of the classical susceptible-infected (SI) process with a recovery policy modeled as a state-dependent retrial queueing system in which arriving infected nodes, upon finding all the limited number of recovery units busy, join a virtual buffer and try persistently for service in order to regain susceptibility. In particular, we formulate the stochastic SI epidemic model with added retrial phenomenon as a finite continuous-time Markov chain (CTMC) and derive the Laplace transforms of the underlying transient state probability distributions and corresponding moments for a closed population of size N driven by homogeneous and heterogeneous contacts. Our numerical results reveal the strong influence of infection heterogeneity and retrial frequency on the transient behavior of the model for various performance measures.","PeriodicalId":137948,"journal":{"name":"2016 IEEE 37th Sarnoff Symposium","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 37th Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2016.7846752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Knowledge on the dynamics of standard epidemic models and their variants over complex networks has been well-established primarily in the stationary regime, with relatively little light shed on their transient behavior. In this paper, we analyze the transient characteristics of the classical susceptible-infected (SI) process with a recovery policy modeled as a state-dependent retrial queueing system in which arriving infected nodes, upon finding all the limited number of recovery units busy, join a virtual buffer and try persistently for service in order to regain susceptibility. In particular, we formulate the stochastic SI epidemic model with added retrial phenomenon as a finite continuous-time Markov chain (CTMC) and derive the Laplace transforms of the underlying transient state probability distributions and corresponding moments for a closed population of size N driven by homogeneous and heterogeneous contacts. Our numerical results reveal the strong influence of infection heterogeneity and retrial frequency on the transient behavior of the model for various performance measures.