Analisis Kestabilan Model Matematika Penyebaran Penyakit Schistosomiasis dengan Saturated Incidence Rate

E. Widya, Miswanto Miswanto, Cicik Alfiniyah
{"title":"Analisis Kestabilan Model Matematika Penyebaran Penyakit Schistosomiasis dengan Saturated Incidence Rate","authors":"E. Widya, Miswanto Miswanto, Cicik Alfiniyah","doi":"10.20473/CONMATHA.V2I2.23851","DOIUrl":null,"url":null,"abstract":"Schistosomiasis is a disease caused by infections of the genus Schistosoma. Schistosomiasis can be transmitted through schistosoma worms that contact human skin. Schistosomiasis is a disease that continues to increase in spread. Saturated incidence rates pay attention to the ability to infect a disease that is limited by an increase in the infected population. This thesis formulates and analyzes a mathematical model of the distribution of schistosomiasis with a saturated incidence rate. Based on the analysis of the model, two equilibrium points are obtained, namely non-endemic equilibrium points (E0) and endemic equilibrium points (E1). Both equilibrium points are conditional asymptotically stable. The nonendemic equilibrium point will be asymptotically stable if rh > dh, rs > ds and R0 < 1, while the endemic equilibrium point will be asymptotically stable if R0 > 1. Sensitivity analysis shows that there are parameters that affect the spread of the disease. Based on numerical simulation results show that when R0 < 1, the number of infected human populations (Hi), the number of infected snail populations (Si), the amount of cercaria density (C) and the amount of miracidia density (M) will tend to decrease until finally extinct. Otherwise at the time R0 > 1, the number of the four populations tends to increase before finally being in a constant state.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/CONMATHA.V2I2.23851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Schistosomiasis is a disease caused by infections of the genus Schistosoma. Schistosomiasis can be transmitted through schistosoma worms that contact human skin. Schistosomiasis is a disease that continues to increase in spread. Saturated incidence rates pay attention to the ability to infect a disease that is limited by an increase in the infected population. This thesis formulates and analyzes a mathematical model of the distribution of schistosomiasis with a saturated incidence rate. Based on the analysis of the model, two equilibrium points are obtained, namely non-endemic equilibrium points (E0) and endemic equilibrium points (E1). Both equilibrium points are conditional asymptotically stable. The nonendemic equilibrium point will be asymptotically stable if rh > dh, rs > ds and R0 < 1, while the endemic equilibrium point will be asymptotically stable if R0 > 1. Sensitivity analysis shows that there are parameters that affect the spread of the disease. Based on numerical simulation results show that when R0 < 1, the number of infected human populations (Hi), the number of infected snail populations (Si), the amount of cercaria density (C) and the amount of miracidia density (M) will tend to decrease until finally extinct. Otherwise at the time R0 > 1, the number of the four populations tends to increase before finally being in a constant state.
血吸虫病是一种由血吸虫属感染引起的疾病。血吸虫病可通过接触人体皮肤的血吸虫传播。血吸虫病是一种继续扩大传播的疾病。饱和发病率关注的是受感染人口增加限制的疾病感染能力。本文建立并分析了饱和发病率血吸虫病分布的数学模型。通过对模型的分析,得到了两个平衡点,即非地方性平衡点(E0)和地方性平衡点(E1)。两个平衡点都是条件渐近稳定的。当rh > dh、rs > ds、R0 < 1时,非地方病平衡点渐近稳定,当R0 > 1时,地方病平衡点渐近稳定。敏感性分析表明,存在影响疾病传播的参数。根据数值模拟结果表明,当R0 < 1时,受感染的人类种群数(Hi)、受感染的蜗牛种群数(Si)、尾蚴数量密度(C)和miracidia数量密度(M)趋于减少,直至最终灭绝。否则,在R0 > 1时,四个种群的数量趋于增加,最后达到恒定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信