Persong: Multi-Modality Driven Music Recommendation System

Haonan Cheng, Xiaoying Huang, Ruyu Zhang, Long Ye
{"title":"Persong: Multi-Modality Driven Music Recommendation System","authors":"Haonan Cheng, Xiaoying Huang, Ruyu Zhang, Long Ye","doi":"10.1109/ICMEW56448.2022.9859488","DOIUrl":null,"url":null,"abstract":"In this work, we develop PerSong, a music recommendation system that can recommend personalised songs based on the user’s current status. First, multi-modal physiological signals, namely visual and heart rate, are collected and combined to construct multi-level temporal sequences. Then, we propose a Global-Local Similarity Function (GLSF) based music recommendation algorithm to establish a mapping between the user’s current state and the music. Our demonstrations have attended a quite number of exhibitions and shown remarkable performance under diverse circumstances. We have made the core of our work publicly available: https://github.com/yrz7991/GLSF/tree/master.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop PerSong, a music recommendation system that can recommend personalised songs based on the user’s current status. First, multi-modal physiological signals, namely visual and heart rate, are collected and combined to construct multi-level temporal sequences. Then, we propose a Global-Local Similarity Function (GLSF) based music recommendation algorithm to establish a mapping between the user’s current state and the music. Our demonstrations have attended a quite number of exhibitions and shown remarkable performance under diverse circumstances. We have made the core of our work publicly available: https://github.com/yrz7991/GLSF/tree/master.
个人:多模态驱动的音乐推荐系统
在这项工作中,我们开发了一个音乐推荐系统PerSong,它可以根据用户的当前状态推荐个性化的歌曲。首先,采集多模态生理信号,即视觉信号和心率信号,并进行组合,构建多层次时间序列;然后,我们提出了一种基于全局-局部相似函数(Global-Local Similarity Function, GLSF)的音乐推荐算法来建立用户当前状态与音乐之间的映射关系。我们的示范产品参加了不少展览会,在各种环境下都表现出色。我们已经公开了我们工作的核心内容:https://github.com/yrz7991/GLSF/tree/master。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信