Swarm-based Algorithms Using Chaos for Task Scheduling in Cloud

A. Zandvakili, N. Mansouri, M. Javidi
{"title":"Swarm-based Algorithms Using Chaos for Task Scheduling in Cloud","authors":"A. Zandvakili, N. Mansouri, M. Javidi","doi":"10.1109/ICWR51868.2021.9443157","DOIUrl":null,"url":null,"abstract":"A dispersed computing standard that assists the users is cloud computing. In this model, users pay as much as use. Cloud servers try to achieve high performance, and one of the main factors is optimal scheduling. Several metaheuristic techniques are used to solve the scheduling problem, which is an NP-hard problem. In this paper, for task scheduling in the cloud, we use Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Bat Algorithm (BA), and Grasshopper Optimization Algorithm (GOA), which are swarm-based algorithms. All of these algorithms have one or more parameters that can be updated adaptively. We update these parameters using Chaos and compare their performance. The experimental results indicate that the improved GOA can optimize task scheduling problem by effective utilization of available resources.","PeriodicalId":377597,"journal":{"name":"2021 7th International Conference on Web Research (ICWR)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR51868.2021.9443157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A dispersed computing standard that assists the users is cloud computing. In this model, users pay as much as use. Cloud servers try to achieve high performance, and one of the main factors is optimal scheduling. Several metaheuristic techniques are used to solve the scheduling problem, which is an NP-hard problem. In this paper, for task scheduling in the cloud, we use Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Bat Algorithm (BA), and Grasshopper Optimization Algorithm (GOA), which are swarm-based algorithms. All of these algorithms have one or more parameters that can be updated adaptively. We update these parameters using Chaos and compare their performance. The experimental results indicate that the improved GOA can optimize task scheduling problem by effective utilization of available resources.
基于混沌的云任务调度群算法
一种帮助用户的分散计算标准就是云计算。在这种模式下,用户支付的费用与使用量一样多。云服务器试图实现高性能,其中一个主要因素是最优调度。调度问题是一个np困难问题,采用了几种元启发式技术来解决调度问题。在本文中,对于云中的任务调度,我们使用了粒子群算法(PSO),萤火虫算法(FA),蝙蝠算法(BA)和蚱蜢优化算法(GOA),这是一种基于群的算法。所有这些算法都有一个或多个可以自适应更新的参数。我们使用Chaos更新这些参数并比较它们的性能。实验结果表明,改进的GOA算法可以通过有效利用可用资源来优化任务调度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信