Hierarchical Meta-learning Models with Deep Neural Networks for Spectrum Assignment

H. Rutagemwa, K. E. Baddour, Bo Rong
{"title":"Hierarchical Meta-learning Models with Deep Neural Networks for Spectrum Assignment","authors":"H. Rutagemwa, K. E. Baddour, Bo Rong","doi":"10.1109/PACRIM47961.2019.8985087","DOIUrl":null,"url":null,"abstract":"In this paper we consider a data-driven approach and apply machine learning methods to facilitate frequency assignment. Specifically, a hierarchical meta-learning architecture that harnesses the predictive capability of both statistical and deep learning approaches is proposed to predict a diverse range of spectrum usage patterns. Using spectrum measurements, network simulations are conducted to evaluate the effectiveness of the proposed architecture. It is shown that the hierarchical meta- learning models with deep recurrent neural networks have great potential for predicting spectrum usage patterns to facilitate multi-tier spectrum assignments.","PeriodicalId":152556,"journal":{"name":"2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM47961.2019.8985087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider a data-driven approach and apply machine learning methods to facilitate frequency assignment. Specifically, a hierarchical meta-learning architecture that harnesses the predictive capability of both statistical and deep learning approaches is proposed to predict a diverse range of spectrum usage patterns. Using spectrum measurements, network simulations are conducted to evaluate the effectiveness of the proposed architecture. It is shown that the hierarchical meta- learning models with deep recurrent neural networks have great potential for predicting spectrum usage patterns to facilitate multi-tier spectrum assignments.
基于深度神经网络的频谱分配层次元学习模型
在本文中,我们考虑了一种数据驱动的方法,并应用机器学习方法来促进频率分配。具体而言,提出了一种分层元学习架构,该架构利用统计和深度学习方法的预测能力来预测各种频谱使用模式。利用频谱测量,进行了网络仿真,以评估所提出架构的有效性。研究表明,基于深度递归神经网络的分层元学习模型在预测频谱使用模式以促进多层频谱分配方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信