Research on Column Concept Vector Based Web Table Matching

Chao Chen, Yue Zhao
{"title":"Research on Column Concept Vector Based Web Table Matching","authors":"Chao Chen, Yue Zhao","doi":"10.1109/WISA.2015.61","DOIUrl":null,"url":null,"abstract":"The Web consists of a huge number of structured data in the form of tables, which makes automatically integrating information from those tables of interest to ordinary users possible. A key problem of web table integration is the discovery of correspondences between web table columns. Most of traditional schema matching techniques can't work well because of the lack of schema information and the small number of instance in the web tables. This paper presents a method of web table matching which is based on column concept vector. Column Heading Matcher and Instance Matcher are employed to enhance the matching accuracy. A set of experiments are applied to real-world web tables and the results demonstrate that our method has higher precision and accuracy.","PeriodicalId":198938,"journal":{"name":"2015 12th Web Information System and Application Conference (WISA)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th Web Information System and Application Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Web consists of a huge number of structured data in the form of tables, which makes automatically integrating information from those tables of interest to ordinary users possible. A key problem of web table integration is the discovery of correspondences between web table columns. Most of traditional schema matching techniques can't work well because of the lack of schema information and the small number of instance in the web tables. This paper presents a method of web table matching which is based on column concept vector. Column Heading Matcher and Instance Matcher are employed to enhance the matching accuracy. A set of experiments are applied to real-world web tables and the results demonstrate that our method has higher precision and accuracy.
基于列概念向量的Web表匹配研究
Web由大量表格形式的结构化数据组成,这使得自动集成普通用户感兴趣的表格中的信息成为可能。web表集成的一个关键问题是发现web表列之间的对应关系。由于缺乏模式信息和web表中实例数量少,传统的模式匹配技术大多不能很好地工作。提出了一种基于列概念向量的web表匹配方法。采用了列标题匹配器和实例匹配器来提高匹配精度。应用于实际网络表的一组实验结果表明,该方法具有较高的精密度和准确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信