Information Redundancy and Biases in Public Document Information Extraction Benchmarks

Seif Laatiri, Pirashanth Ratnamogan, Joel Tang, Laurent Lam, William Vanhuffel, Fabien Caspani
{"title":"Information Redundancy and Biases in Public Document Information Extraction Benchmarks","authors":"Seif Laatiri, Pirashanth Ratnamogan, Joel Tang, Laurent Lam, William Vanhuffel, Fabien Caspani","doi":"10.48550/arXiv.2304.14936","DOIUrl":null,"url":null,"abstract":"Advances in the Visually-rich Document Understanding (VrDU) field and particularly the Key-Information Extraction (KIE) task are marked with the emergence of efficient Transformer-based approaches such as the LayoutLM models. Despite the good performance of KIE models when fine-tuned on public benchmarks, they still struggle to generalize on complex real-life use-cases lacking sufficient document annotations. Our research highlighted that KIE standard benchmarks such as SROIE and FUNSD contain significant similarity between training and testing documents and can be adjusted to better evaluate the generalization of models. In this work, we designed experiments to quantify the information redundancy in public benchmarks, revealing a 75% template replication in SROIE official test set and 16% in FUNSD. We also proposed resampling strategies to provide benchmarks more representative of the generalization ability of models. We showed that models not suited for document analysis struggle on the adjusted splits dropping on average 10,5% F1 score on SROIE and 3.5% on FUNSD compared to multi-modal models dropping only 7,5% F1 on SROIE and 0.5% F1 on FUNSD.","PeriodicalId":294655,"journal":{"name":"IEEE International Conference on Document Analysis and Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.14936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in the Visually-rich Document Understanding (VrDU) field and particularly the Key-Information Extraction (KIE) task are marked with the emergence of efficient Transformer-based approaches such as the LayoutLM models. Despite the good performance of KIE models when fine-tuned on public benchmarks, they still struggle to generalize on complex real-life use-cases lacking sufficient document annotations. Our research highlighted that KIE standard benchmarks such as SROIE and FUNSD contain significant similarity between training and testing documents and can be adjusted to better evaluate the generalization of models. In this work, we designed experiments to quantify the information redundancy in public benchmarks, revealing a 75% template replication in SROIE official test set and 16% in FUNSD. We also proposed resampling strategies to provide benchmarks more representative of the generalization ability of models. We showed that models not suited for document analysis struggle on the adjusted splits dropping on average 10,5% F1 score on SROIE and 3.5% on FUNSD compared to multi-modal models dropping only 7,5% F1 on SROIE and 0.5% F1 on FUNSD.
公共文档信息提取基准中的信息冗余和偏差
可视化丰富的文档理解(VrDU)领域,特别是关键信息提取(KIE)任务的进步,标志着高效的基于transformer的方法(如LayoutLM模型)的出现。尽管KIE模型在公共基准测试中微调后表现良好,但它们仍然难以泛化缺乏足够文档注释的复杂现实用例。我们的研究强调,KIE标准基准(如SROIE和fundd)在训练和测试文档之间包含显著的相似性,可以调整以更好地评估模型的泛化。在这项工作中,我们设计了实验来量化公共基准中的信息冗余,结果显示SROIE官方测试集的模板复制率为75%,fundd的模板复制率为16%。我们还提出了重采样策略,以提供更能代表模型泛化能力的基准。我们发现,不适合文档分析的模型在调整后的分割上的F1分数在SROIE上平均下降10.5%,在fundd上平均下降3.5%,而多模态模型在SROIE上平均下降7.5%,在fundd上平均下降0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信