Improving the bounds on optimal merging

C. Christen
{"title":"Improving the bounds on optimal merging","authors":"C. Christen","doi":"10.1109/SFCS.1978.20","DOIUrl":null,"url":null,"abstract":"This paper presents a new merging algorithm and uses a counterstrategy argument to derive new upper and lower bounds on the complexity of the optimal merging problem. These improved bounds differ by at most ⌈ m/4 ⌉ comparisons, where m is the number of elements of the shorter sequence.","PeriodicalId":346837,"journal":{"name":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1978.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a new merging algorithm and uses a counterstrategy argument to derive new upper and lower bounds on the complexity of the optimal merging problem. These improved bounds differ by at most ⌈ m/4 ⌉ comparisons, where m is the number of elements of the shorter sequence.
改进了最优合并的边界
本文提出了一种新的归并算法,并利用反策略论证导出了最优归并问题复杂度的新的上界和下界。这些改进范围相差最多⌈m / 4⌉比较,其中m是短序列的元素的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信