A tool for automatic dendritic spine detection and analysis. Part I: Dendritic spine detection using multi-level region-based segmentation

Ertunç Erdil, A. M. Yagci, Ali Ozgur Argunsah, Y. Ramiro-Cortes, A. F. Hobbiss, Inbal Israely, D. Ünay
{"title":"A tool for automatic dendritic spine detection and analysis. Part I: Dendritic spine detection using multi-level region-based segmentation","authors":"Ertunç Erdil, A. M. Yagci, Ali Ozgur Argunsah, Y. Ramiro-Cortes, A. F. Hobbiss, Inbal Israely, D. Ünay","doi":"10.1109/IPTA.2012.6469558","DOIUrl":null,"url":null,"abstract":"We propose an image processing pipeline for dendritic spine detection in two-photon fluorescence microscopy images. Spines of interest to neuroscientists often contain high intensity regions with respect to their surroundings. We find such maxima regions using morphological image reconstruction. These regions facilitate a multi-level segmentation algorithm to detect spines. First, watershed algorithm is applied to extract initial rough regions of spines. Then, these results are further refined using a graph-theoretic region-growing algorithm which incorporates segmentation on a sparse representation of image data and hierarchical clustering as a post-processing step. We compare our final results to segmentation results of the domain expert. Our pipeline produces promising segmentation results with practical run times for monitoring streaming data.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose an image processing pipeline for dendritic spine detection in two-photon fluorescence microscopy images. Spines of interest to neuroscientists often contain high intensity regions with respect to their surroundings. We find such maxima regions using morphological image reconstruction. These regions facilitate a multi-level segmentation algorithm to detect spines. First, watershed algorithm is applied to extract initial rough regions of spines. Then, these results are further refined using a graph-theoretic region-growing algorithm which incorporates segmentation on a sparse representation of image data and hierarchical clustering as a post-processing step. We compare our final results to segmentation results of the domain expert. Our pipeline produces promising segmentation results with practical run times for monitoring streaming data.
树突脊柱自动检测和分析工具。第一部分:基于多级区域分割的树突脊柱检测
我们提出了一种用于双光子荧光显微镜图像中树突脊柱检测的图像处理管道。神经科学家感兴趣的脊柱通常包含相对于周围环境的高强度区域。我们利用形态学图像重建找到了这样的极大值区域。这些区域便于多级分割算法来检测棘。首先,采用分水岭算法提取棘的初始粗糙区域;然后,使用图论区域增长算法进一步细化这些结果,该算法将图像数据的稀疏表示分割和分层聚类作为后处理步骤。我们将最终结果与领域专家的分割结果进行比较。我们的管道产生了有希望的分割结果,并具有实际的运行时间来监控流数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信