Comparison of state-of-the-art estimators for electrical parameter identification of PMSM

Xinyue Li, R. Kennel
{"title":"Comparison of state-of-the-art estimators for electrical parameter identification of PMSM","authors":"Xinyue Li, R. Kennel","doi":"10.1109/PRECEDE.2019.8753197","DOIUrl":null,"url":null,"abstract":"In this paper, four state-of-the-art online estimation approaches, i.e. recursive least square (RLS) approach, model reference adaptive system (MRAS), extended Kalman filter (EKF) and unscented Kalman filter (UKF) for parameter identification of permanent magnet synchronous machines (PMSM) are implemented and compared. Moreover, a promising estimation method, the moving horizon estimator (MHE), is also investigated. The performance comparison is conducted with simulations and experiments under various scenarios on a permanent magnet synchronous motor among these five techniques.","PeriodicalId":227885,"journal":{"name":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRECEDE.2019.8753197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, four state-of-the-art online estimation approaches, i.e. recursive least square (RLS) approach, model reference adaptive system (MRAS), extended Kalman filter (EKF) and unscented Kalman filter (UKF) for parameter identification of permanent magnet synchronous machines (PMSM) are implemented and compared. Moreover, a promising estimation method, the moving horizon estimator (MHE), is also investigated. The performance comparison is conducted with simulations and experiments under various scenarios on a permanent magnet synchronous motor among these five techniques.
永磁同步电机电气参数辨识方法的比较
针对永磁同步电机(PMSM)参数辨识问题,采用递推最小二乘法(RLS)、模型参考自适应系统(MRAS)、扩展卡尔曼滤波(EKF)和无气味卡尔曼滤波(UKF)四种最先进的在线估计方法进行了实现和比较。此外,还研究了一种很有前途的估计方法——移动视界估计器(MHE)。通过仿真和实验,对这五种技术在永磁同步电机上的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信