A Hybrid Grid-based Method for Mining Arbitrary Regions-of-Interest from Trajectories

MLSDA '13 Pub Date : 2013-12-02 DOI:10.1145/2542652.2542653
Chihiro Hio, Luke Bermingham, Guochen Cai, Kyungmi Lee, Ickjai Lee
{"title":"A Hybrid Grid-based Method for Mining Arbitrary Regions-of-Interest from Trajectories","authors":"Chihiro Hio, Luke Bermingham, Guochen Cai, Kyungmi Lee, Ickjai Lee","doi":"10.1145/2542652.2542653","DOIUrl":null,"url":null,"abstract":"There is an increasing need for a trajectory pattern mining as the volume of available trajectory data grows at an unprecedented rate with the aid of mobile sensing. Region-of-interest mining identifies interesting hot spots that reveal trajectory concentrations. This article introduces an efficient and effective grid-based region-of-interest mining method that is linear to the number of grid cells, and is able to detect arbitrary shapes of regions-of-interest. The proposed algorithm is robust and applicable to continuous and discrete trajectories, and relatively insensitive to parameter values. Experiments show promising results which demonstrate benefits of the proposed algorithm.","PeriodicalId":248909,"journal":{"name":"MLSDA '13","volume":"15 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MLSDA '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542652.2542653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

There is an increasing need for a trajectory pattern mining as the volume of available trajectory data grows at an unprecedented rate with the aid of mobile sensing. Region-of-interest mining identifies interesting hot spots that reveal trajectory concentrations. This article introduces an efficient and effective grid-based region-of-interest mining method that is linear to the number of grid cells, and is able to detect arbitrary shapes of regions-of-interest. The proposed algorithm is robust and applicable to continuous and discrete trajectories, and relatively insensitive to parameter values. Experiments show promising results which demonstrate benefits of the proposed algorithm.
基于混合网格的轨迹任意兴趣区域挖掘方法
在移动传感的帮助下,可用的轨迹数据量以前所未有的速度增长,对轨迹模式挖掘的需求日益增加。兴趣区域挖掘识别出揭示轨迹集中的有趣热点。本文介绍了一种高效的基于网格的兴趣区域挖掘方法,该方法与网格单元数呈线性关系,能够检测兴趣区域的任意形状。该算法具有鲁棒性,适用于连续和离散轨迹,对参数值相对不敏感。实验结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信