BiLSTM Network-Based Approach for Electric Load Forecasting in Energy Cell-Tissue Systems

Zhengping Li, Fei Yu, Qi Guan
{"title":"BiLSTM Network-Based Approach for Electric Load Forecasting in Energy Cell-Tissue Systems","authors":"Zhengping Li, Fei Yu, Qi Guan","doi":"10.1109/ICCSIE55183.2023.10175285","DOIUrl":null,"url":null,"abstract":"To solve the problem of load forecasting in energy cell-tissue systems, this paper analyzes the correlation between different cells, and proposes a load forecasting method that considers the correlation between energy cells for their different load characteristics. Firstly, the energy cells are clustered using the clustering algorithm, and then select energy cell historical data with strong correlation to form a time series, which is input into the bidirectional long short term memory (BiLSTM) network for load forecasting to improve the accuracy of the prediction.","PeriodicalId":391372,"journal":{"name":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIE55183.2023.10175285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To solve the problem of load forecasting in energy cell-tissue systems, this paper analyzes the correlation between different cells, and proposes a load forecasting method that considers the correlation between energy cells for their different load characteristics. Firstly, the energy cells are clustered using the clustering algorithm, and then select energy cell historical data with strong correlation to form a time series, which is input into the bidirectional long short term memory (BiLSTM) network for load forecasting to improve the accuracy of the prediction.
基于BiLSTM网络的能量细胞组织系统电力负荷预测方法
为解决能量细胞-组织系统负荷预测问题,分析了不同细胞间的相关性,提出了一种考虑不同负荷特性的能量细胞间相关性的负荷预测方法。首先利用聚类算法对能量单元进行聚类,然后选取相关性较强的能量单元历史数据形成时间序列,输入双向长短期记忆(BiLSTM)网络进行负荷预测,提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信