Identifying candidate objects using hierarchical clustering analysis

Somsak Phattarsukol, P. Muenchaisri
{"title":"Identifying candidate objects using hierarchical clustering analysis","authors":"Somsak Phattarsukol, P. Muenchaisri","doi":"10.1109/APSEC.2001.991505","DOIUrl":null,"url":null,"abstract":"Clustering analysis has rarely been studied as a technique for object identification methods, although it has been broadly employed in data classification in a wide range of research areas. In this paper, we propose a review of clustering analysis methods and a scheme for applying hierarchical clustering analysis to facilitate identification of candidate objects in procedural source code. The study shows that clustering analysis is able to correctly group functions into meaningful clusters even though functions are written in an interleaved order. Clustering analysis can work well with the modular case and the tangled case without any additional support.","PeriodicalId":130293,"journal":{"name":"Proceedings Eighth Asia-Pacific Software Engineering Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth Asia-Pacific Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2001.991505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Clustering analysis has rarely been studied as a technique for object identification methods, although it has been broadly employed in data classification in a wide range of research areas. In this paper, we propose a review of clustering analysis methods and a scheme for applying hierarchical clustering analysis to facilitate identification of candidate objects in procedural source code. The study shows that clustering analysis is able to correctly group functions into meaningful clusters even though functions are written in an interleaved order. Clustering analysis can work well with the modular case and the tangled case without any additional support.
使用层次聚类分析识别候选对象
聚类分析作为一种目标识别方法很少被研究,尽管它在广泛的研究领域中被广泛应用于数据分类。本文对聚类分析方法进行了综述,并提出了一种应用层次聚类分析来识别程序源代码中的候选对象的方案。研究表明,聚类分析能够正确地将功能分组为有意义的聚类,即使功能是以交错顺序编写的。在没有任何额外支持的情况下,聚类分析可以很好地处理模块化情况和纠结情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信