Video Analytics in Smart Transportation for the AIC’18 Challenge

Ming-Ching Chang, Yi Wei, Nenghui Song, Siwei Lyu
{"title":"Video Analytics in Smart Transportation for the AIC’18 Challenge","authors":"Ming-Ching Chang, Yi Wei, Nenghui Song, Siwei Lyu","doi":"10.1109/CVPRW.2018.00016","DOIUrl":null,"url":null,"abstract":"With the fast advancements of AICity and omnipresent street cameras, smart transportation can benefit greatly from actionable insights derived from video analytics. We participate the NVIDIA AICity Challenge 2018 in all three tracks of challenges. In Track 1 challenge, we demonstrate automatic traffic flow analysis using the detection and tracking of vehicles with robust speed estimation. In Track 2 challenge, we develop a reliable anomaly detection pipeline that can recognize abnormal incidences including stalled vehicles and crashes with precise locations and time segments. In Track 3 challenge, we present an early result of vehicle re-identification using deep triplet-loss features that matches vehicles across 4 cameras in 15+ hours of videos. All developed methods are evaluated and compared against 30 contesting methods from 70 registered teams on the real-world challenge videos.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

With the fast advancements of AICity and omnipresent street cameras, smart transportation can benefit greatly from actionable insights derived from video analytics. We participate the NVIDIA AICity Challenge 2018 in all three tracks of challenges. In Track 1 challenge, we demonstrate automatic traffic flow analysis using the detection and tracking of vehicles with robust speed estimation. In Track 2 challenge, we develop a reliable anomaly detection pipeline that can recognize abnormal incidences including stalled vehicles and crashes with precise locations and time segments. In Track 3 challenge, we present an early result of vehicle re-identification using deep triplet-loss features that matches vehicles across 4 cameras in 15+ hours of videos. All developed methods are evaluated and compared against 30 contesting methods from 70 registered teams on the real-world challenge videos.
AIC ' 18挑战赛智能交通视频分析
随着aaic的快速发展和无处不在的街头摄像头,智能交通可以从视频分析中获得可操作的见解。我们参加了2018年NVIDIA AICity挑战赛的所有三项挑战。在Track 1挑战中,我们演示了使用鲁棒速度估计检测和跟踪车辆的自动交通流分析。在Track 2挑战中,我们开发了一个可靠的异常检测管道,可以通过精确的位置和时间段识别包括失速车辆和碰撞在内的异常事件。在Track 3挑战中,我们展示了车辆重新识别的早期结果,该结果使用深度三重损失特征在15小时以上的视频中匹配4个摄像头中的车辆。所有开发的方法都将在真实世界的挑战视频中与70个注册团队的30种竞赛方法进行评估和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信