Relation Extraction via Domain-aware Transfer Learning

Shimin Di, Yanyan Shen, Lei Chen
{"title":"Relation Extraction via Domain-aware Transfer Learning","authors":"Shimin Di, Yanyan Shen, Lei Chen","doi":"10.1145/3292500.3330890","DOIUrl":null,"url":null,"abstract":"Relation extraction in knowledge base construction has been researched for the last decades due to its applicability to many problems. Most classical works, such as supervised information extraction and distant supervision, focus on how to construct the knowledge base (KB) by utilizing the large number of labels or certain related KBs. However, in many real-world scenarios, the existing methods may not perform well when a new knowledge base is required but only scarce labels or few related KBs available. In this paper, we propose a novel approach called, Relation Extraction via Domain-aware Transfer Learning (ReTrans), to extract relation mentions from a given text corpus by exploring the experience from a large amount of existing KBs which may not be closely related to the target relation. We first propose to initialize the representation of relation mentions from the massive text corpus and update those representations according to existing KBs. Based on the representations of relation mentions, we investigate the contribution of each KB to the target task and propose to select useful KBs for boosting the effectiveness of the proposed approach. Based on selected KBs, we develop a novel domain-aware transfer learning framework to transfer knowledge from source domains to the target domain, aiming to infer the true relation mentions in the unstructured text corpus. Most importantly, we give the stability and generalization bound of ReTrans. Experimental results on the real world datasets well demonstrate that the effectiveness of our approach, which outperforms all the state-of-the-art baselines.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Relation extraction in knowledge base construction has been researched for the last decades due to its applicability to many problems. Most classical works, such as supervised information extraction and distant supervision, focus on how to construct the knowledge base (KB) by utilizing the large number of labels or certain related KBs. However, in many real-world scenarios, the existing methods may not perform well when a new knowledge base is required but only scarce labels or few related KBs available. In this paper, we propose a novel approach called, Relation Extraction via Domain-aware Transfer Learning (ReTrans), to extract relation mentions from a given text corpus by exploring the experience from a large amount of existing KBs which may not be closely related to the target relation. We first propose to initialize the representation of relation mentions from the massive text corpus and update those representations according to existing KBs. Based on the representations of relation mentions, we investigate the contribution of each KB to the target task and propose to select useful KBs for boosting the effectiveness of the proposed approach. Based on selected KBs, we develop a novel domain-aware transfer learning framework to transfer knowledge from source domains to the target domain, aiming to infer the true relation mentions in the unstructured text corpus. Most importantly, we give the stability and generalization bound of ReTrans. Experimental results on the real world datasets well demonstrate that the effectiveness of our approach, which outperforms all the state-of-the-art baselines.
基于领域感知迁移学习的关系提取
知识库构建中的关系提取由于适用于许多问题,在过去的几十年里一直被研究。有监督信息抽取和远程监督等经典研究主要关注的是如何利用大量的标签或某些相关的知识库来构建知识库。然而,在许多现实场景中,当需要一个新的知识库,但只有很少的标签或相关的知识库可用时,现有的方法可能表现不佳。在本文中,我们提出了一种新的方法,称为通过领域感知迁移学习(ReTrans)进行关系提取,通过从大量现有的可能与目标关系不密切相关的知识库中探索经验,从给定的文本语料库中提取关系提及。我们首先提出从海量文本语料库中初始化关系提及的表示,并根据现有的知识库更新这些表示。基于关系提及的表示,我们研究了每个知识库对目标任务的贡献,并建议选择有用的知识库来提高所提出方法的有效性。基于选定的知识库,我们开发了一种新的领域感知迁移学习框架,将知识从源领域迁移到目标领域,旨在推断非结构化文本语料库中提及的真实关系。最重要的是,我们给出了ReTrans的稳定性和泛化界。在真实世界数据集上的实验结果很好地证明了我们的方法的有效性,它优于所有最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信